1)Воспользуемся формулой члена арифметической прогрессии, который стоит на n-м месте аn = a1 + (n - 1) * d.
В условии задачи сказано, что член данной последовательности под номером один равен -15, а разность данной арифметической прогрессии равна 3.
Подставляя эти значения, а также значение n = 23 в формулу члена арифметической прогрессии, который стоит на n-м месте, находим двадцать третий член данной арифметической прогрессии:
а23 = -15 + (23 - 1) * 3 = -15 + 22 * 3 = -15 + 66 = 51.
ответ: двадцать третий член данной арифметической прогрессии равен 51.
Пошаговое объяснение:
2)Первые 10 членов арифметической прогрессии:-4; -2; 0; 2; 4; 6; 8; 10; 12; 14Так как сумма первых пяти членов прогрессии равна нулю:-4 +(-2) + 0 + 2 + 4 = 0То сумма первых десяти членов будет равна сумме последующих пяти членов прогрессии:6 + 8 + 10 + 12 + 14 = 50
0 \\ {x}^{2} - 4x - 5 < 0 \\ {x}^{2} - 4x - 5 = 0 \\ d = 16 + 20 = 36 \\ \sqrt{d} = 6" class="latex-formula" id="TexFormula2" src="https://tex.z-dn.net/?f=5%20%2B%204x%20-%20%20%7Bx%7D%5E%7B2%7D%20%20%3E%200%20%5C%5C%20%20%7Bx%7D%5E%7B2%7D%20%20-%204x%20-%205%20%3C%200%20%5C%5C%20%20%7Bx%7D%5E%7B2%7D%20%20-%204x%20-%205%20%3D%200%20%5C%5C%20d%20%3D%2016%20%2B%2020%20%3D%2036%20%5C%5C%20%20%5Csqrt%7Bd%7D%20%20%3D%206" title="5 + 4x - {x}^{2} > 0 \\ {x}^{2} - 4x - 5 < 0 \\ {x}^{2} - 4x - 5 = 0 \\ d = 16 + 20 = 36 \\ \sqrt{d} = 6">
Методом интервалов : Хє (-1;5)
Е(у) = (-1;5)
111, 777, 117, 171, 177, 771, 717