Понять, что такое круги Эйлера, можно, решив несколько задач. Каждый круг Эйлера обозначает множество объектов (то есть набор каких-либо объектов, заданный так, что про вообще любой объект можно однозначно определить, есть он в этом наборе, или нет), а точка — один объект. Точка рисуется внутри круга, если объект принадлежит этому множеству, а иначе — снаружи круга.
В случае, если объект принадлежит сразу нескольким множествам (то есть лежит в пересечении множеств), обозначающая его точка находится в пересечении соответствующих этим множествам кругов (то есть в каждом из них).
Если объект принадлежит хотя бы одному из нескольких множеств, то говорят, что он принадлежит их объединению. Применительно к кругам Эйлера это означает, что точка лежит хотя бы в одном из кругов, соответствующих этим множествам.
Объект лежит в разности двух множеств, если он лежит в первом из них, но не лежит во втором.
Чтобы не рисовать точки, часто просто пишут их количество в соответствующих частях кругов.
Выведем уравнение касательной к графику функции y=f (x) в точке с абсциссой х0. Для наглядности используем график из предыдущего урока 10.3. («Определение производной. Геометрический смысл производной») и выведем уравнение касательной МТ.
Так как точку М мы взяли произвольно, то должны получить уравнение касательной, которое будет справедливо для любой функции y=f (x), имеющей касательную в определенной точке с абсциссой х0.
Итак, любую прямую можно записать в виде y=kx+b, где k — угловой коэффициент прямой. Мы теперь знаем, что в качестве углового коэффициента можно взять f '(х0) — значение производной функции y=f (x) в точке с абсциссой х0. Эта точка является общей точкой для функции и для касательной МТ.
Таким образом, касательная МТ имеет вид: y=f '(х0)·x+b. Осталось определить значение b. Это мы сделаем просто: подставим координаты точки М в последнее равенство, т.е. вместо х запишем х0, а вместо у подставим f (х0). Получаем равенство:
f (х0) =f '(х0)·х0+b.
Отсюда b=f (х0) - f '(х0)·х0. Подставляем это значение b в равенство: y=f '(х0)·x+b. Тогда:
y =f '(х0)·х+f (х0) - f '(х0)·х0. Упростим.
y=f (х0)+(f '(х0)·х - f '(х0)·х0) или
y=f (х0)+f '(х0)(х - х0). Это и есть искомое уравнение касательной МТ.
В случае, если объект принадлежит сразу нескольким множествам (то есть лежит в пересечении множеств), обозначающая его точка находится в пересечении соответствующих этим множествам кругов (то есть в каждом из них).
Если объект принадлежит хотя бы одному из нескольких множеств, то говорят, что он принадлежит их объединению. Применительно к кругам Эйлера это означает, что точка лежит хотя бы в одном из кругов, соответствующих этим множествам.
Объект лежит в разности двух множеств, если он лежит в первом из них, но не лежит во втором.
Чтобы не рисовать точки, часто просто пишут их количество в соответствующих частях кругов.