вот ответ:
1 + 2 + 3 + 4 + 5 + … + 48 + 49 + 50 + 51 + 52 + 53 + … + 96 + 97 + 98 + 99 + 100
Пошаговое объяснение:
а это прочитаешь эсли надо пошагове объяснение
найдите сумму от 1 до 100 (методом гауса) нужно 101*49+50Найти сумму всех натуральных чисел от 1 до 100.
Юный Гаусс справился с этим заданием достаточно быстро, найдя интересную закономерность, которая получила большое распространение и применяется по сей день при устном счете.
Давайте попробуем решить эту задачку устно. Но для начала возьмем числа от 1 до 10:
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10
Посмотрите внимательно на эту сумму и попробуйте догадаться, что же необычного смог разглядеть Гаусс? Для ответа необходимо хорошо представлять себе состав чисел.
Гаусс сгруппировал числа следующим образом:
(1+10) + (2+9) + (3+8) + (4+7) + (5+6)
30; 41; 52; 63; 74; 85; 96 - числа, в которых число десятков на 3 больше, чем единиц (всего 7 вариантов)
Т.е. 30 : 3 - число десятков, 0 - число единиц ⇒ 3 - 0 = 3
41: 4 - число десятков, 1 - число единиц ⇒ 4 - 1 = 3
52 : 5 - число десятков, 2 - число единиц ⇒ 5 - 2 = 3
и т.д.
21: 42; 63; 84 - числа, в которых число единиц в 2 раза меньше числа десятков (всего 4 варианта).
Т.е. 21: 2 - число десятков, 1 - число единиц ⇒ 2 : 1 = 2 раза
42: 4 - число десятков, 2 - число единиц ⇒ 4 : 2 = 2
и т.д.
15; 24; 33; 42; 51; 60 - числа, в которых числа единиц и десятков в сумме равна 6 (всего 6 вариантов).
Т.е. 15: 1 + 5 = 6
24: 2 + 4 = 6
33: 3 + 3 = 6
42: 4 + 2 = 6
и т.д.
ответ: 16/3 = 5 целых 1/3