Таня написала на доске число 64, а Тоня написала 22. Таня каждую минуту увеличивает своё число на 53 и записывает результат на доску, а Тоня каждую минуту увеличивает своё число на 11 и тоже записывает результат на доску. Каким будет наименьшее число, которое на доске напишет как Таня, так и Тоня, возможно не одновременно?
r² = (p-a)³/p, где: р = 3/2*а - полупериметр, а - сторона основания.
Преобразуем
r² = 1/8*а³ : 3/2*а = а²/12 - оставим в таком виде
Объем пирамиды по формуле:
Vпир = 1/3 * S*h -
Объем цилиндра по формуле
Vцил = π*r² *h
Отсюда
h = V : (πr²) = V: (π*a²/12) = (12*V)/(πa²) - высота пирамиды
Остается вычислить Sосн равностороннего треугольника по формуле
Sосн = √3/4*а²
Подставим в формулу объема пирамиды и получим (?)
Vпир = (1/3)*(√3/4*а²)*(12V/(πа²))= √3*V= √3 ~ 1.73 - ОТВЕТ