Квадрат ABCD; E - середина AD, F - середина AB, G - середина BC, H - середина CD (рисунок в приложении).
Найти:Площадь четырехугольника EFGH.
Решение:Вариант 1.
Проведем диагонали EG и FH четырехугольника EFGH (пусть они пересекаются в точке O). Так как они соединяют середины противоположных сторон квадрата, они делят его на 4 других равных квадрата: AFOE, BFOG, CHOG и DHOE. В каждом из них проведена диагональ. А диагональ делит сам квадрат на две равные по площади части (и не только по площади). Так как площадь четырехугольника EFGH (на самом деле это тоже квадрат) занимает половину площади каждого из квадратов AFOE, BFOG, CHOG и DHOE, то она равна половине ABCD, то есть:
S(EFGH) = 4 · 4 : 2 = 8 (см²)
Вариант 2.
Можно воспользоваться тем, что площадь параллелограмма Вариньона (параллелограмма, соединяющего середины сторон произвольного четырехугольника) всегда равна половине площади исходного четырехугольника. Значит:
S (EFGH) = S (ABCD) / 2 = 4² / 2 = 16 / 2 = 8 (см²)
ответ:
обозначаем: x-количество мужчину-количество женщинz-количество детейсоставляем уравнения: x+y+z=20 - всего пошло в поход20x+5y+3z=149 - это они неслиотталкиваясь от того что 1 ребенок несет 3 кг, получаем, что детей было либо 3, либо 13 (23 и более рассматривать нет смысла, ибо противоречит условию) - лишь в этих случаях получаем на конце числа килограммов цифру 9итак, у нас 2 случая: z=3 и z=13получаем совокупность двух систем: (система1)x+y+z=2020x+5y+3z=149z=3(система2)x+y+z=2020x+5y+3z=149z=3решения для этих систем будут такими : (система1)x=4y=13z=3(система2)x=5y=2z=13ответ: либо (4 мужчины, 13 женщин, 3 ребенка),
либо (5 мужчин, 2 женщины, 13 детей)