ответ: где примеры
Пошаговое объяснение:ты не назвал примеры
ответ:
удастся помешать
пошаговое объяснение:
при выборе произвольного числа n и последующем действии в итоге могут быть получены числа n-1 или n+1, так как они отличаются на 2, а целью собаки является получить число кратное 4, то свинья любое произвольное единичное число может превратить в не кратное 4.
минимальное число чисел которое может задать собака для получения числа кратного 4 является два. это должны быть числа 4*z1 - 1 и 4*z2 + 1 (где z1 и z2 - целые числа). в этом случае как при увеличении, так и при уменьшении на 1, одно из чисел становится кратным 4.
в любой последовательности чисел с четным количеством членов не более половины может быть после действия свиньи кратным 4 (если свинья не поддается), в случае нечетного количества членов, свинья может выбрать действие, которое превращает в не кратные 4 больше половины членов ряда (можно разделить ряд на пары + 1 число и потом произвести над ними одно и то же действие так, что не более одного числа в паре станет кратным 4, а единичное число не будет кратно 4).
в итоге из произвольного ряда чисел (после действия свиньи) кратных 4 может быть получено не более n/2 для рядов с четным количеством членов и не более (n-1)/2 для рядов с нечетным количеством членов
таким образом максимальное количество чисел, кратных 4, которые может получить собака будет равно (2019-1)/2 = 1009
заявленный и в приведённом условии. Далее порассуждаем практически:
;
;
;
;
;
;
производная
больше производной
, т.е. дальше левая часть уравнения, растёт быстрее, чем правая, а значит, других корней при
быть не может.
левая часть уравнения положительна, а правая отрицательна, так что других корней при
быть не может.
, так как при сравнении двух непрерывных функций на этом интервале меняется знак.
где
то:
Это число, очевидно иррационально, что легко доказать от обратного методом Евклида. Однако справа должно быть рациональное число
а значит, мы пришли к противоречию. Таким образом, второе решение иррационально.
по определению дающая решение, т.е. являющаяся обратной, к функции
Функция вводится аналогично, скажем, функции
являющейся решением уравнения
но в отличие от арктангенса, функция Ламберта используется намного реже в прикладных задачах (в основном в задачах теплопроводности), и поэтому – менее широко известна. Функция вводится на расширенной комплексной плоскости, т.е. алгебраически, а не арифметически, а значит по определению, может быть многозначной, и является таковой при отрицательных значениях аргумента
хотя нам достаточно будет знать лишь её действительные значения, которых при отрицательных аргументах всегда два. Вид действительных ветвей функции Ламберта представлен на приложенном изображении.
;
;
;
;
тогда:
отсюда через функцию Ламберта:
;
равна:
;
искомое значение и вычисляя
добиваясь его равенства 
как раз и даст значение
, что можно легко проверить подстановкой.
;
;
;
;
ответ:какие действия выполнять
Пошаговое объяснение: