Окно имеет форму прямоугольника, который сверху заканчивается полукругом. Каким должен быть радиус "R" полукруга, чтобы при заданном периметре "p" окно имело наибольшую площадь?
Ну было 7 подъездов, 5 этажей и 4 квартиры на каждом этаже. т.е. на подъезд 20 квартир. всего 20*7=140 квартир в доме. убрали 2 подъезда 140-20*2=100 квартир осталось. добавили 3 этажа, т.е. 3*4=12 квартир в каждом подъезде, а подъездов осталось 5, значит 12*5=60 квартир добавилось, следовательно стало всего 100+60=160 квартир. значит сейчас на 1 подъезд не 20 квартир, как было, а 8 (этажей) * 4=32 квартиры. уберем еще 2 подъезда, останется 32*3=96 квартир. добавим 3 этажа 3*4=12*3=36. 96+36=132 квартиры. так что нет, если еще убрать два подъезда и добавить еще раз 3 этажа, то второй раз увеличить количество квартир не получится.
Пошаговое объяснение:
Надо привести к уравнению окружности:
(x - Xo)² + (y - Yo)² = R².
Перепишем данное уравнение. Первая окружность.
x² -10*x + y² + 16*y + 80 = 0
(x² - 2*x*5 + 5²) - 25 + (y² + 2*y*8 + 8²) - 64 + 80 = 0
(x-5)² + (y+8)² = 25+64-80 = 89-80 = 9 = 3²
Радиус - R =3, центр в точке А(5;-8) - первая окружность - ответ.
Вторая окружность.
(x² + 2*x*3 + 3²) - 9 + (y² + 2*y*2 + 2²) - 4 - 12 = 0.
(x+3)² + (y+2)² = 9+4+12 = 25 = 5² = R²
Радиус - R = 5, центр в точке В(-3;-2) - вторая окружность - ответ.
Уравнение прямой АВ
ДАНО: А(5;-8), В(-3;-2) НАЙТИ: Y = k*x + b
1) k = ΔY/ΔX = (Аy-Вy)/(Аx-Вx)=(-8-(-2))/(5-(-3))= -0,75 - коэффициент наклона прямой
2) b=Аy-k*Аx=-8-(-0,75)*5= -4,25- сдвиг по оси ОУ
Уравнение прямой Y(АВ) = -0,75*x - 4,25 - ответ.
Расстояние АВ по теореме Пифагора.
a = Аy-Вy = -8 - (-2) = -6
b = Аx-Вx = 5 - (-3) = 8
c² = a² + b² = 36+64 = 100
c = AB = √100 = 10 - расстояние АВ - ответ.