Ну как бы не совсем то но буквы на свои поменяй и получится
Пошаговое объяснение:
Условие
Из вершины A треугольника ABC опущены перпендикуляры AM и AP на биссектрисы внешних углов B и C.
Докажите, что отрезок PM равен половине периметра треугольника ABC.
Подсказка
Пусть прямые AM и AP пересекают прямую BC в точках K и L. Тогда отрезок KL равен половине периметра исходного треугольника, а MP – средняя линия треугольника AKL.
Решение
Пусть прямые AM и AP пересекают прямую BC в точках K и L. Поскольку высоты BM и CP треугольников ABK и ACL являются их биссектрисами, то эти треугольники равнобедренные, поэтому BK = AB и CL = AC. Значит, отрезок KL равен периметру треугольника ABC.
Высоты BM и CP равнобедренных треугольников ABK и ACL являются их медианами, поэтому точки M и P – середины отрезков AK и AL. Значит, MP – средняя линия треугольника AKL. Следовательно, отрезок MP равен половине отрезка KL, то есть половине периметра треугольника ABC.
2
Пошаговое объяснение:
10.6\10-(6.3/10-х) =4.9/10
1,06 -0,63 +х = 0,49
х = 0,49 +0,63 - 1,06
х = 1,12 - 1,06
х= 0,06
0,06 = 6/100
общий делитель числителя и знаменателя 2.
При сокращении на 2 получится дробь 3/50