Запоминаем: если числители одинаковы, сравниваем знаменатели (если у одной дроби знаменатель меньше другого, то эта дробь больше и наоборот). А если знаменатели одинаковы, сравниваем числители (если у одной дроби числитель больше другого, то эта дробь больше и наоборот).
Так как осевое сечение конуса жто прямоугольный треугольник, то т.к. образующие конуса равнв, то он ещё и равнобедренный. Значит острые углы равны 45 градусов. Радиус основания равен R, тогда диаметр, являющийся гипотенузой в осевом сечении, равен 2R. cos(45)=x/2R, где х - длина образующей конуса, тогда х=2R*(кореньиздвух)/2=R*(кореньиздвух). Формула боковой поверхности конуса говорит, что она равна произведению Пи на радиус основания и на длину образующей, получаем: Пи*R*R*(кореньиздвух)=Пи*(R^2)*(кореньиздвух)
Так как осевое сечение конуса жто прямоугольный треугольник, то т.к. образующие конуса равнв, то он ещё и равнобедренный. Значит острые углы равны 45 градусов. Радиус основания равен R, тогда диаметр, являющийся гипотенузой в осевом сечении, равен 2R. cos(45)=x/2R, где х - длина образующей конуса, тогда х=2R*(кореньиздвух)/2=R*(кореньиздвух). Формула боковой поверхности конуса говорит, что она равна произведению Пи на радиус основания и на длину образующей, получаем: Пи*R*R*(кореньиздвух)=Пи*(R^2)*(кореньиздвух)
1) >
2) <
3) >
4) >
5) >
6) >
7) >
8) <
На всякий случай все записал
Пошаговое объяснение:
Запоминаем: если числители одинаковы, сравниваем знаменатели (если у одной дроби знаменатель меньше другого, то эта дробь больше и наоборот). А если знаменатели одинаковы, сравниваем числители (если у одной дроби числитель больше другого, то эта дробь больше и наоборот).
1) знаменатели равны, сравниваем числители: 2>1 (>)
2) знаменатели равны, сравниваем числители: 2<5 (<)
3) знаменатели равны, сравниваем числители: 3>1 (>)
4) числители равны, сравниваем знаменатели: 5<8 (>)
5) числители равны, сравниваем знаменатели: 6<7 (>)
6) числители равны, сравниваем знаменатели: 4<5 (>)
7) знаменатели равны, сравниваем числители: 11>8 (>)