М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Мюсли004
Мюсли004
06.04.2020 07:07 •  Математика

Тиімді тасилмен есептеу керек екен кім жазады дурыс лайк коп басам​


Тиімді тасилмен есептеу керек екен кім жазады дурыс лайк коп басам​

👇
Открыть все ответы
Ответ:
ismail00
ismail00
06.04.2020
Как составить план рассказа1. перечитайте весь рассказ (наметьте для себя его части).2. разделите рассказ на части, отметив начало каждого рассказа галочкой (одна часть отличается от другой содержанием).3. перечитайте первую часть, выделяя в ней главное (отметьте главные места в тексте и выпишите их в тетрадь).4. озаглавьте эту часть (выразите главное в одном предложении и запишите свой заголовок в тетрадь).5. эту же работу выполните при чтении следующих частей.6. проверьте себя: прочитайте план, просмотрите рассказ, убедитесь в том, что план отражает главное (не упущено основное, не повторяются заголовки, заголовки вспомнить содержание рассказа).
4,8(66 оценок)
Ответ:
osadchevasasha
osadchevasasha
06.04.2020
Задачу можно решить двумя
1) посредством формул, аксиом и теорем планиметрии, изучаемых в стандартной школьной программе;
2) и через привлечение теоремы Менелая.
Решим её обоими

[[[ 1 ]]] с п о с о б

Обозначим длины сторон треугольника \Delta ABC как:

AB = c ;
BC = a ;
и AC = b ;

Тогда: BL = \frac{2}{7} a ;

Обозначим MC = xb , где x – некоторое число,

такое, что: 0 < x < 1 ;

Найдя это число x , мы найдём и пропорцию, в которой BM делит сторону AC ;

Проведём прямую LQ || AC , тогда по трём углам: \Delta QBL \sim \Delta MBC ,

а значит: \frac{QL}{MC} = \frac{BL}{BC} и \frac{BQ}{BM} = \frac{BL}{BC} ;

QL = \frac{ \frac{2}{7} a }{a} MC и BQ = \frac{ \frac{2}{7} a }{a} BM ;

[1] QL = \frac{2}{7} xb и BQ = \frac{2}{7} BM ;

Поскольку BO = \frac{7}{7+4} BM = \frac{7}{11} BM , то:

QO = BO - BQ = \frac{7}{11} BM - \frac{2}{7} BM = ( \frac{49}{77} - \frac{22}{77} ) BM ;

QO = \frac{27}{77} BM ;

По трём углам: \Delta OQL \sim \Delta OMK , а значит:

\frac{MK}{QL} = \frac{MO}{QO} и MK = \frac{MO}{QO} QL ;

Поскольку MO = \frac{4}{7+4} BM = \frac{4}{11} BM и по [1] QL = \frac{2}{7} xb , то:

MK = \frac{MO}{QO} QL = \frac{ \frac{4}{11} BM }{ \frac{27}{77} BM } \frac{2}{7} xb = \frac{4}{11} \cdot \frac{77}{27} \cdot \frac{2}{7} xb = \frac{4}{1} \cdot \frac{1}{27} \cdot \frac{2}{1} xb ;

MK = \frac{8}{27} xb ;

По теореме Фалеса, об отсечении параллельными прямыми внутри угла пропорциональных отрезков, получается, что:

KC = \frac{5}{7} b ;

Тогда получаем уравнение:

KC = KM + MC ;

\frac{5}{7} b = \frac{8}{27} xb + xb ;

\frac{5}{7} = ( 1 + \frac{8}{27} ) x ;

\frac{5}{7} = \frac{35}{27} x ;

x = \frac{5}{7} : \frac{35}{27} = \frac{5}{7} \cdot \frac{27}{35} = \frac{1}{7} \cdot \frac{27}{7} ;

x = \frac{27}{49} ;

Значит MC = \frac{27}{49} AC и AM = \frac{22}{49} AC , откуда ясно, что отношение, в котором точка M делит сторону AC , считая от точки C , будет:

CM : MA = \frac{27}{49} AC : \frac{22}{49} AC ;

CM : MA = 27 : 22 .

[[[ 2 ]]] с п о с о б

Применим теорему Менелая

в треугольнике \Delta BCM с секущей KL :

\frac{BL}{LC} \cdot \frac{CK}{KM} \cdot \frac{MO}{OB} = 1 ;

\frac{2}{5} \cdot \frac{ \frac{5}{7} b }{KM} \cdot \frac{4}{7} = 1 ;

\frac{5}{7} b : KM = \frac{35}{8} ;

\frac{5}{7} b : \frac{35}{8} = KM ;

KM = \frac{5}{7} \cdot \frac{8}{35} b = \frac{1}{7} \cdot \frac{8}{7} b ;

KM = \frac{8}{49} b ;

Отсюда: AM = AK + KM = \frac{2}{7} b + \frac{8}{49} b = ( \frac{14}{49} + \frac{8}{49} ) b ;

AM = \frac{22}{49} b ;

Значит MC = \frac{27}{49} AC , откуда ясно, что отношение, в котором точка M делит сторону AC , считая от точки C , будет:

CM : MA = \frac{27}{49} AC : \frac{22}{49} AC ;

CM : MA = 27 : 22 .

О т в е т : CM : MA = 27 : 22 .

Втреугольнике abc точка m лежит на стороне ac, а точка l на стороне bc расположена так, что bl : lc
4,4(9 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ