Женщин 9
Мужчин 27
Пошаговое объяснение:
Если площадь не превышает какого-то значения b, то решается так:
Пусть х - длина меньшего катета,
Тогда х+10 - длина большего катета.
Площадь прямоугольного треугольника равна половине произведения катетов:
S = х • (х + 10) / 2
Составляем неравенство:
х • (х + 10) / 2 ≤ b
х • (х + 10) ≤ 2b
х² + 10х - 2b ≤ 0
Решаем квадратное уравнение:
D = 10² - 4(-2b) = 10² + 8b
√D = √(10² + 8b)
х1 = (-10 + √(10² + 8b)) / 2
х2 = (-10 - √(10² + 8b)) / 2 - не подходит, так как длина катета не может быть отрицательной)
Значит: х ≤ (-10 + √(10² + 8b))/2
Если бы b было равно, к примеру 12, то
х1 = (-10 + √(10² + 8•12)) / 2 =
= (-10 + √(100 • 96)) / 2 =
= (-10 + √(196) / 2 =
= (-10 + 14) / 2 = 4/2 = 2
Значит, х ≤ 2
ПРОВЕРКА:
1) х + 10 = 2+10 = 12 см) - больший катет.
2) 2 • 12 / 2 = 12 кв.см - площадь.
При длине меньшего катета меньше, чем 2, площадь будет меньше, чем 12.
Дана правильная шестиугольная пирамида с плоским углом при вершине пирамиды 45 градусов и стороной основания а = 2.
Пусть боковое ребро рано L.
По теореме косинусов:
2 = √(L² + L² - 2*L*L*cos45°) = √(2L² - L²√2) = x(√(2 -√2)).
Отсюда боковое ребро равно: L = 2/(√(2 - √2)).
Проведём осевое сечение через боковые рёбра.
В сечении - равнобедренный треугольник, высота Н его равна высоте пирамиды. Основание равно 2 стороны а.
H = √(L² - a²) = √((4/(2 - √2)) - 4) = 2√(√2 - 1)/(√(2 - √2).
Площадь основания So = 3a²√3/2 = 6√3.
Объём V пирамиды равен:
V = (1/3)SoH = (1/3)*6√3*(2√(√2 - 1)/(√(2 - √2)) = 4√3*(√(√2 - 1)/(√(2 - √2)).
Если выполнить действия полученной формулы, то получим:
V ≈ 5,82590126 .