x = -2.
ODZ: x belongs to [-2; 2].
Пошаговое объяснение:
In order to find the domain of definition of the function y = √ (4 - x ^ 2) (quadruple root), we start by considering it.
So, we are given a function whose variable is under the sign of the quadruple root.
In order for the function to have a value, the radical expression must be non-negative.
We need to find a solution to the following inequality:
4 - x ^ 2 ≥ 0;
We apply the formula difference of squares to the left side of the inequality:
(2 - x) (2 + x) ≥ 0;
Looking for points:
2 - x = 0;
x = 2;
2 + x = 0;
x = -2.
ODZ: x belongs to [-2; 2].
0,738
* 9,7
5,166
+6,642
7,1586
б) 3.6*5.125 =18,45
в) 0.081 *0.1 =0,0081
г) 28.13 :9.7=2,9
281,3 : 97
- 194 2,9
873
-873
0
д) 0.0988:0.0095 =10,4
988 : 95
- 95 10,4
38
- 0
380
- 380
0
е) 0.052:0,1=0,52
5,2 : 10
- 0 0,52
52
- 50
20
-20
0
2)52: 38.3: 43.24: 49.6: 58.86
(52+38,3+43,24+49,6+58,86):5=242:5=48,4
3) 575.4-4.3*8.8+9:0.18 =587,56
4,3*8,8=37,84
9:0,18=50
575,4-37,84+50=587,56