1.Определите вид треугольника по координатам его вершин:А(2;-3;4),В(1;2;-1),С(3;-2;1)Вычислите его внутренний угол при вершине В.сторона AB = корень((2-1)^2 + (-3-2)^2 + (4+1)^2) = корень(1+25+25) = корень(51) сторона AС = корень((2-3)^2 + (-3+2)^2 + (4-1)^2) = корень(1+1+9) = корень(11) сторона BС = корень((3-1)^2 + (-2-2)^2 + (1+1)^2) = корень(4+16+4) = корень(24)это значит, что треугольник разностороннийтеперь найдем углыcos углa А = ((1-2)(3-2)+(2+3)(-2+3)+(-1-4)(1-4))/корень(561)=19/корень(561)cos углa В = ((2-1)(3-1)+(2-2)(-2-2)+(4+1)(1+1))/корень(264)=12/корень(264) cos углa С = ((2-3)(1-3)+(2+2)(2+2)+(4-1)(-1-1))/корень(24*51)=12/корень(24*51) углы тоже все разные все
Если будешь использовать решение, предложенное Троллем, то вот формулы:
S - площадь треугольника со сторонами a, b, с
p - его полупериметр, т.е. (a+b+c)/2
r - радиус вписанной в него окружности
sqrt(z) - функция квадратного корня из величины z
S=(r/2)*(a+b+c)
S=sqrt(p*(p-a)*(p-b)*(p-c)) //ф-ла Герона
Подставив значения, получаем:
площадь треугольника (основания пирамиды) равна 336 см, радиус вписанной окружности равен 8 см
высота пирамиды из этого тоже равна 8 см. //по т. Пифагора
x - расстояния от основания высоты пирамиды до плоскостей боковых граней равны между собой, и выражаются в данном случае так:
x = sqrt(8^2-((8*sqrt(2))/2)^2) = sqrt(32) //по т. Пифагора
x = 4*sqrt(2) - "четыре корня из двух"
Пошаговое объяснение: