1. Написать уравнение прямой проходящей через точку Мо(1,2) и удаленной от точки А (-2, -5) вдвое дальше, чем от точки В (1,8) 2. Написать уравнение прямой проходящей на расстоянии корень(10) от точки А(5,4) перпендикулярно прямой 2х+6y-3=0
Побудуємо прямокутник ABCD, та проведемо в ньому діагоналі АС і BD, а також висоту DO до діагоналі АС і висоту EK із точки перетину діагоналей до більшої сторони AD.
Приймемо, що ОС=х,
тоді АС=4х.
Так як діагоналі прямокутника рівні і точкою перетину діляться навпіл, то АЕ=СЕ=ЕD=2х
і OE=CE-OC ⇒ OE=2x-x ⇒ OE=x.
Так як точка перетину діагоналей прямокутника є його геометричним центром, то CD=2EK=7.2 см.
Из определения медианы следует, что значения первой половины чисел до медианы должны быть не больше ее значения (естественно, при расположении числового набора в порядке возрастания значений), а значения второй половины числового ряда — не меньше. Предположим, что первое убранное число находилось в первой половине ряда (для данной задачи — до числа №50, тогда медианой оставшихся чисел будет число №51 данного ряда. Если же убранное число принадлежало второй половине ряда, то медианой оставшихся чисел будет число №50, причём оно не больше, чем число №51. Тогда число №50 равно 38, а число №51 — 52. Таким образом, медиана всего набора (поскольку в наборе четное количество чисел) будет средним арифметическим: (38+52):2=45.
14.4 см
Пошаговое объяснение:
Побудуємо прямокутник ABCD, та проведемо в ньому діагоналі АС і BD, а також висоту DO до діагоналі АС і висоту EK із точки перетину діагоналей до більшої сторони AD.
Приймемо, що ОС=х,
тоді АС=4х.
Так як діагоналі прямокутника рівні і точкою перетину діляться навпіл, то АЕ=СЕ=ЕD=2х
і OE=CE-OC ⇒ OE=2x-x ⇒ OE=x.
Так як точка перетину діагоналей прямокутника є його геометричним центром, то CD=2EK=7.2 см.
Тоді, із прямокутного ΔCDO маємо:
OD²=CD²-OC² ⇒ OD²=51.84 - x²
Із прямокутного ΔEDO маємо:
OD²=ED²-OE² ⇒ OD²=4x² - x² ⇒ OD²=3x²
Отримуємо вираз:
51.84 - x² = 3x²
4x²=51.84
x=3.6
Тоді довжина діагоналі:
АС=4х=14.4 см