2442, 3856
1525, 3665
по моему так
ответ: Чисел, которые кратны 8, но не кратны 9, больше, чем чисел, которые кратны 9, но не кратны 8.
Итак, нам нужно сравнить:
Числа, кратные 8, но не кратные 9.
Числа, кратные 9, но не кратные 8.
Давайте к каждой из этих групп чисел прибавим числа, которые кратны 8 и еще числа, кратные 9. Получим:
1. (Кратные 8 + не кратные 9) + (кратные 8 + кратные 9) = кратные 8 + кратные 8 = 2 * (кратные 8).
2. (Кратные 9 + не кратные 8) + (кратные 8 + кратные 9) = кратные 9 + кратные 9 = 2 * (кратные 9).
Теперь нам нужно сравнить удвоенное количество чисел, кратных 8, и удвоенное количество, чисел кратных 9. Можно поделить каждую из частей на 2.
Итак, каких чисел больше:
кратных 8;
или кратных 9?
Понятно, что чисел, кратных 8, все-таки больше, чем чисел, кратных 9, так как само число 8 меньше 9 и мы берем довольно большой промежуток чисел.
Возвратившись к исходной задаче, получаем:
Чисел, которые кратны 8, но не кратны 9, больше, чем чисел, которые кратны 9, но не кратны 8.
Найдём производную нашей данной функции: f(x) = x^3 – 3x^2 + 5.
Воспользовавшись основными формулами дифференцирования и правилами дифференцирования:
(x^n)’ = n * x^(n-1).
(с)’ = 0, где с – const.
(с * u)’ = с * u’, где с – const.
(u ± v)’ = u’ ± v’.
Таким образом, производная нашей данной функции будет следующая:
f(x)' = (x^3 – 3x^2 + 5)’ = (x^3)’ – (3x^2)’ + (5)’ = 3 * x^(3 – 1) – 3 * 2 * x^(2 - 1) – 0 = 3 * x^2 – 6 * x^1 = 3x^2 – 6x.
ответ: Производная нашей данной функции будет равна f(x)' = 3x^2 – 6x.
Пошаговое объяснение:
а) 2112, 2008
б) 1000, 5515