Пошаговое объяснение:
x ^ 3 - 3 * x ^ 2 + 2 = 0 ;
( x - 1 ) * ( x ^ 2 - 2 * x - 2 ) = 0 ;
1 ) x - 1 = 0 ;
Известные значения переносим на одну сторону, а неизвестные на другую сторону. При переносе значений, их знаки меняются на противоположный знак. То есть получаем:
x = 0 + 1 ;
x = 1 ;
2 ) x ^ 2 - 2 * x - 2 = 0 ;
Найдем дискриминант квадратного уравнения:
D = b ^ 2 - 4ac = (-2) ^ 2 - 4·1·(-2) = 4 + 8 = 12;
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = ( 2 - √12 ) / ( 2·1 ) = 1 - √3 ≈ -0.732;
x2 = ( 2 + √12) / ( 2·1 ) = 1 + √3 ≈ 2.732;
ответ: х = 1, х = 1 - √3 и х = 1 + √3.
ответ:
всего двузначных чисел: 99-9=90 (от наибольшего двузначного числа отнимаем количество однозначных чисел)
если число четное и кратное 3, (то есть делится на 2 и на 3) то оно делится на 2*3=6
не трудно догадаться, что наименьшее такое число: 12
наибольшее: 96
чтобы без перебора узнать, сколько таких чисел (n), воспользуемся свойствами арифметической прогрессии:
a_n=a_1+(n-1)*d \\ \\ a_n=96 \\ a_1=12 \\ d=6 \\ \\ 96=12+(n-1)*6 \\96=12+6n-6 \\ 6n=90 \\ \\ n=\frac{90}{6}= 15
ну и наконец, чтобы найти вероятность выбора этого числа, нужно число благоприятных исходов поделить на число всех исходом (то есть "количество четных двузначных чисел кратных 3" поделить на "количество двузначных чисел")
p=\frac{15}{90}=\frac{1}{6} \\ \\ otbet: \ \frac{1}{6}
dsfsdfsf