5. ∠2 = 52°
6. 45° - 1-й угол 135° - 2-й угол
7. 113° и 67°
8. 86° - каждый из двух острых углов
Пошаговое объяснение:
Сумма двух смежных углов = 180°
5. ∠1 = 128° ∠2 = 180° - 128° = 52°
6. Пусть х° первый угол, тогда 3х° - второй угол (в 3 раза больше)
х° + 3х° = 4х° - сумма двух смежных углов, что равно 180°
4х = 180 х = 180/4 х = 45° - 1-й угол 45*3 = 135° - 2-й угол
7. Пусть y° - меньший угол, x° - больший угол
Сумма смежных углов 180° и разность углов 46°, составим и решим систему уравнений:
{x + y = 180° → сложим левые и правые части уравнений:
{x - y = 46°
х+х+у-у= 180+46
2x = 226°
х = 113° - больший угол
y = 180°- 113°
y = 67° - меньший угол
113 - 67 = 46° - разность смежных углов
8. При пересечении 2 прямых, образуются 4 вертикальных угла (а, b, с, d), противоположные из них равны между собой (∠а = ∠с; ∠b = ∠d)
Пусть ∠а = 94°, т.к. ∠а = ∠с, то ∠с = 94°
Сумма всех 4-х вертикальных углов = 360°
360° - (94°*2) = 172°- сумма ∠b и ∠d
172° : 2 = 86° - ∠b и ∠d
Система не имеет решения, если графики уравнений системы не имеют общих точек ( не пересекаются и не касаются)
Для двух линейных уравнений
1) ах+ву =с
2) mx+ny =k
Система не имеет решений, если коэффициенты при неизвестных пропорциональны, но не пропорциональны свободным членам: a /m = b/n ≠ c/к
П р и м е р . В системе уравнений
1)2х -3у =7
2)6х -9у = 12
Коэффициенты пропорциональны 2/6 = (-3)/ (-9) = 1/3
но отношение свободных членов 7 / 12 не равно 1 / 3.
Эта система не имеет решений
Пошаговое объяснение:
(x-2)(x-4)(x-6)<0
Нули:
x-2=0
x-4=0
x-6=0
x=2
x=4
x=6
Используя метод интервалов получим:
x∈(-∞;2)∪(4;6)