Запишем формулу: P=m/n, где m – число исходов, благоприятствующих осуществлению события X, а n – число всех равновозможных элементарных исходов.
Для начала определим вероятность выпадения орла или решки при одном броске. Выпадает всегда 1 результат, а всего исходов 2. Значит, вероятность выпадения орла или решки = 1/2. Но бросков мы делаем 2, а значит, количество исходов возводится в квадрат и теперь равно 1 / 2 × 2 = 1/4. В последующем мы будем домножать числитель на количество удовлетворяющих нас исходов.
Значение "Решка выпала хотя бы 1 раз" верно при следующих результатах:
1) решка и орёл
2) орёл и решка
3) решка и решка
Как видим, количество удовлетворяющих нас результатов =3, а значит, в двух бросках решка выпадает хотя бы один раз с вероятностью 1 × 3 / 4 = 3/4 = 0.75 = 75%
В первый раз выпал орёл при следующих результатах:
1) орёл и решка
2) орёл и орёл
Как видим, количество удовлетворяющих нас результатов =2, а значит, в двух бросках орёл выпадет первым с вероятностью 1 × 2 / 4 = 2/4 = 1/2 = 0.5 = 50%
Быстрее всех ест Барсик, в 2 раза медленнее Васька, еще в 2 раза медленнее Кузя. Барсик съел свою порцию (12 рыбок) за 3 минуты: 12:3=4 рыбки в минуту - скорость потребления Барсика 4:2=2 рыбки в минуту - скорость потребления Васьки 2:1=1 рыбка в минуту - скорость потребления Кузи
Барсик съел свою порцию за 3 минуты, за это время Васька съел: 3х2=6 рыбок у него осталось 6 рыбок, которые они стали есть вместе с Барсиком: 4+2=6 - скорость потребления Васьки и Барсика вместе оставшиеся 6 рыбок вместе они съедят за: 6:6=1 минуту
К этому времени пройдет: 3+1=4 минуты
За это время Кузя съест 4х1=4 рыбки У него останется 6-4=2 рыбки Чтобы их доесть, ему понадобится дополнительно 2:1=2 минуты
Запишем формулу: P=m/n, где m – число исходов, благоприятствующих осуществлению события X, а n – число всех равновозможных элементарных исходов.
Для начала определим вероятность выпадения орла или решки при одном броске. Выпадает всегда 1 результат, а всего исходов 2. Значит, вероятность выпадения орла или решки = 1/2. Но бросков мы делаем 2, а значит, количество исходов возводится в квадрат и теперь равно 1 / 2 × 2 = 1/4. В последующем мы будем домножать числитель на количество удовлетворяющих нас исходов.
Значение "Решка выпала хотя бы 1 раз" верно при следующих результатах:
1) решка и орёл
2) орёл и решка
3) решка и решка
Как видим, количество удовлетворяющих нас результатов =3, а значит, в двух бросках решка выпадает хотя бы один раз с вероятностью 1 × 3 / 4 = 3/4 = 0.75 = 75%
В первый раз выпал орёл при следующих результатах:
1) орёл и решка
2) орёл и орёл
Как видим, количество удовлетворяющих нас результатов =2, а значит, в двух бросках орёл выпадет первым с вероятностью 1 × 2 / 4 = 2/4 = 1/2 = 0.5 = 50%
ответ: 75%, 50%.