пусть трапеция АВСД АВ и Сд -основания. О - точка пересечения диагоналей. треугольники АОД и ВОС подобны по двум углам ( т.к. основания трапеции параллены то накр. лежащие углы равны). Псть ВО:ОД=7:15. тк треугольники подобны. то сходственные стороны пропорциональны иВО/ОД= ВС/АД=7/15
ВО=7х, АД=15х, средняя линия равна полусумме оснований. Составим уравнение:
(7х+15х):2=44, 22х=88, х=4 ВО=28, АД=60
ответ 28и 60
2. решается аналогично.
1 доказываем подобие треугольников АОД и ВОС
2. Выясняем. что стороны треугольников относятся как 3:4
3. Вспоминаем. что площали подобных тругольников относятся как квадраты их линейных размеров и получаем. что площади относятся как 9:16
Пошаговое объяс1) М-середина отрезка АС, значит М((-2+8)/2;(0-4)/2;(1+9)/2), М(3;-2;5), вектор ВМ имеет координаты: (3+1;-2--2;5-3) или (4;-4;2)
2) Пусть средняя линия MN. N- середина ВС, аналогично пункту 1 находим координаты точки N: ((-1+8)/2;(2-4)/2; (3+9)/2) или (3,5;-1;6). Тогда длина отрезка MN равна корню квадратному из выражения (3,5-3)2+(-1+2)2+(6-5)2 (тут каждая скобка в квадрате!), равно корню квадратному из 2,25 или просто 1,5.
3) Для нахождения координаты вершины D параллелограмма ABCD составьте выражения: длина отрезка АС равна длине отрезка BD, т.е. (8+2)2+(-4-0)2+(9-1)2=(x+1)2+(y-2)2+(z-3)2, где (x;y;z) - координаты точки D. Аналогично выражения: длина отрезка АВ равна длине отрезка CD. А потом, например, длина отрезка AN равна длине отрезка ND. Составьте и решите систему из трех уравнений с тремя неизвестными
нение: