а) Координаты вектора АВ: AB{Xb-Xa;Yb-Ya} или AB{1;1;-7}.
Координаты вектора CD: CD{Xd-Xc;Yd-Yc} или CD{-3;11;-1}.
б) Разность векторов 2АВ-СD равна вектору
(2АВ-СD ){2Xab-Xcd;2Yab-Ycd;2Zab-Zcd} или(2АВ-СD ){5;-9;-13}.
в) Cos(AB,CD)=скалярное произведение векторов АВ и СD, деленное на произведение их модулей.Cosα=(Xab*Xcd+Yab*Ycd+Zab*Zcd)/|AB|*|CD| или Cosα=(-3+11+7)/[√(1+1+49)*√(9+121+1)=15/√6681≈15/81,7≈0,184.
2. Векторы перпендикулярны, если их скалярное произведение равно 0. (Xab*Xcd+Yab*Ycd+Zab*Zcd)=0 Координаты вектора АВ: AB{Xb-Xa;Yb-Ya} или AB{-3;3;-1}.
Координаты вектораCD: CD{Xd-Xc;Yd-Yc} или CD{п-4;0;-8-п}. Тогда -3п+0+8+п=0, отсюда п=4.
Чтобы было проще решать, сначала упростим выражение, а потом уже подставим значения по условию
-(-х-5у)² +22ху + (3у - 2х)² = -(x^2+10xy+25y^2)+22xy+9y^2-12xy+4x^2 (
сдесь мы раскрыли скобки) = -x^2-10xy-25y^2+22xy+9y^2-12xy+4x^2 (привели подобные члены) = 3x^2+0-16y^2 (сократили подобные коэффициенты) = 3x^2+0-16y^2 = 3x^2-16y^2 (избавились от нуля, т.к. в нашем случае он не значим)
Подставляем значения:
3x^2-16y^2 при x=-3; y=2. Получаем:
(3 • (-3)^2) - ( 16 • 2^2) = (-3^3)-16•4 = (-27) - 64 = -91
ответ: -91