Алгебраическое решение. х шт. трехколесных велосипедов. (20-х) шт - двухколесных велосипедов. 3х колес у трехколесных велосипедов. 2*(20-х) колес у двух колесных велосипедов. Всего колес 55, отсюда равенство 3х+2(20-х) =55. 3х+40-2х=55; х=15 - это число трехколесных велосипедов. 20-х=5 - это число двухколесных велосипедов. Арифметическое решение. Предположим, что все велосипеды трехколесные. Тогда будет 1) 3*20=60 колес. 2) 60-55=5колес у нас появилось лишних. Они приходятся по нашему предположению на двухколесные велосипеды по одному колесу на каждый. 3) 5:1=5 велосипедов двухколесных. 4) 20-5=15 трехколесных велосипедов.
Если на чашки весов влезает 20 кг абрикос, то: Делим ящик на две части и уравновешиваем их на чашках весов. Получаем 2 раза по 20 кг. Одну часть откладываем в сторону, делим вторую часть еще на две части, уравновешивая их на весах. Получаем 2 по 10 кг. 10 кг откладываем, вторые 10 кг снова весами делим пополам. Получаем 2 по 5 кг. Откладываем обе части по 5 кг. На весы кладем отложенные 10 кг и из второго ящика отмеряем еще 10 на вторую чашку весов. Таким образом, мы отмерили следующее количество абрикосов: 20 кг; 2 по 10 кг и 2 по 5 кг Теперь нетрудно получить искомое количество абрикосов: 20 + 10 + 5 = 35 (кг) 10 + 5 = 15 (кг)
1,02 вроде так