Площадь поверхности прямоугольного параллелепипеда со сторонами a, b, c равна 2(ab + bc + ac) Объем равен abc Требуется найти два прямоугольных параллелепипеда с равными площадями поверхности, но разными объемами.
Попробуем найти такие два параллелепипеда. Пусть стороны первого параллелепипеда a₁ = 3, b₁ = 3, c₁ = 3 (таким образом, это куб со стороной 3). Второй параллелепипед выберем со сторонами a₂ = 1, b₂ = 1 и некой неизвестной c₂, которую мы найдём из равенства площадей.
Объемы не равны, а значит, исходное утверждение неверно, поскольку нашелся контрпример - два прямоугольных параллелепипеда (3, 3, 3) и (1, 1, 13) с равными площадями поверхности, но неравными объемами.
Площадь поверхности = сумме площадей граней. У прямоугольного параллелепипеда со сторонами a, b, c все 6 граней - прямоугольники, 2 со сторонами a и b, 2 со сторонами b и c, 2 со сторонами a и c. Суммарная площадь поверхности 2ab + 2bc + 2ac = 2(ab + bc +ac)
Решение: Обозначим искомые числа за (х) и (у), тогда сумма этих чисел равна: х+у=120 40% первого числа составляет: 40%*х :100%=0,4*х=0,4х 30% второго числа составляет: 30%*у :100%=0,3*у=0,3у Сумма этих чисел равна: 0,4х+0,3у=41 Решим два уравнения, которые представляют систему уравнений: х+у=120 0,4х+0,3у=41 Из первого уравнения найдём значение (х) х=120-у подставим значение (х) во второе уравнение: 0,4*(120-у) +0,3у=41 48 -0,4у +0,3у=41 -0,1у=41-48 -0,1у=-7 у= -7 : -0,1 у=70 - второе число х=120-70=50 - первое число
79/110
Пошаговое объяснение:
0,7(2)=(0,7(2)*10):10=7,(2):10=7/2/99:10=7/2/11:10=79/110
если что 7/2/99 это 7 целых две девяноста девятых
79/110 это семьдесят девять сто десятых