М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Fin208
Fin208
13.04.2021 00:13 •  Математика

Укажите взаимное расположение следующих функций 1) у=х+2 и у=х-2 2) у=2х+4 и у=8х-2 3) у=-3х-4 и у=-5х+2 4) у=5х-3 и у=5х

👇
Ответ:
Unyrfnch
Unyrfnch
13.04.2021

1) у=х+2 и у=х-2  парралельны

2) у=2х+4 и у=8х-2         8х-2=2х+4

                                           8х-2х= 4+2

                                           6х=6

                                            х=1    у= 2+6=8    пересекаются в точкеА(1,8)

3) у=-3х-4 и у=-5х+2    

   -3х-4=-5х+2

    5х-3х=2+4

    2х=6

      х=3    у= -3*3-4= -15     пересекаются в А(3,-15)

4) у=5х-3 и у=5х    парралельны

4,5(54 оценок)
Открыть все ответы
Ответ:
lolomka109
lolomka109
13.04.2021
Имеем дифференциальное уравнение x * y' = 2y + 1
Перепишем через дифференциалы:
x * (dy/dx) = 2y + 1;
Обе части сначала разделим на x, а затем на (2y+1)
(dy/dx) / (2y + 1) = 1/x;
Наконец, можем умножить обе части на dx, получим дифур с разделяющимися переменными:
dy/(2y + 1) = dx/x
Интегрируем левую и правую части:
∫dy/(2y+1) = ∫dx/x, получаем (1/2) * ln(2y+1) = ln(x) + C
Выражаем игрек через икс:
ln(2y+1) = 2 ln(x) + 2C = 2 ln(x) + 2C*ln(e) = ln[(x^2) * e^(2C)]
2y+1 = (x^2) * e^(2C)
y = (1/2) * ( (x^2) * e^(2C) - 1) =((e^(2C))/2) * x^2 - 1/2
Произвольный коэффициент (e^(2C))/2 можно обозначит любым символом, но пусть это будет тот же самый (для простоты), тогда
y = C * x^2 - 1/2
4,5(25 оценок)
Ответ:
Ljjr6958der8cox45
Ljjr6958der8cox45
13.04.2021
Пишем характеристическое уравнение: k²+7*k+6=0. Оно имеет действительные неравные корни k1=-6, k2=-1. В таком случае общее решение уравнения имеет вид Yо=C1*e^(k1*x)+C2*e^(k2*x). В нашем случае Yo=C1*e^(-6*x)+C2*e^(-x). Дифференцируя это равенство, получаем Y'o=-6*C1*e^(-6*x)-C2*e^(-x). Подставляя начальные условия, приходим к системе уравнений:

C1+C2=1
-6*C1-C2=2

Решая эту систему, находим C1=-3/5, C2=8/5. Тогда искомое частное решение таково: Yч=-3/5*e^(-6*x)+8/5*e^(-x).

Проверка: Yч'=18/5*e^(-6*x)-8/5*e^(-x), Yч''=-108/5*e^(-6*x)+8/5*e^(-x). Подставляя Yч, Yч' и Yч'' в уравнение, получаем:
-108/5*e^(-6*x)+8/5*e^(-x)+126/5*e^(-6*x)-56/5*e^(-x)-18/5*e^(-6*x)+48/5*e^(-x)=0=0, то есть найденное решение удовлетворяет уравнению. Теперь находим Yч(0)=-3/5+8/5=1 и Yч'(0)=18/5-8/5=2, то есть найденное решение удовлетворяет и начальным условиям. Значит, оно найдено верно.

ответ: Yч=-3/5*e^(-6*x)+8/5*e^(-x).  
4,8(74 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ