М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
aliosha1337
aliosha1337
26.02.2023 14:27 •  Математика

448. Найдите сумму первых шести членов геометрической прогрессии (bn), если: а) b = 0,4, q = √2;
в) b1 = 0,(3), q=√3;
б) b2 = 2√5, b = 10;
г) b = 7^(-1), q= √7.​

👇
Ответ:
PollyFoxk2002
PollyFoxk2002
26.02.2023

г) b=7√(-1),q=√7

Пошаговое объяснение:

вот ответь я мозг нашел это

4,6(22 оценок)
Открыть все ответы
Ответ:
krohaela
krohaela
26.02.2023

непрерывная случайная величина в результате испытания может принимать значения на некотором интервале. непрерывная случайная величина считается заданной, если известен вид ее функции распределения вероятностей или функции плотности вероятности.

функцией распределения вероятностей случайной величины   называют функцию одной переменной f такую, что f(x)=p(x

свойства функции распределения.

1. для любого   значения функции распределения заключены в промежутке   .

2.   ;   .

3.   является неубывающей функцией.

4. вероятность попадания случайной величины x в интервал [x1,x2) вычисляют по формуле p(x1≤x

вероятность того, что непрерывная случайная величина x примет конкретное значение a, равно нулю, то есть p(x=a)=0 для любого числа a.

4,4(32 оценок)
Ответ:
DGOTVK
DGOTVK
26.02.2023

непрерывная случайная величина в результате испытания может принимать значения на некотором интервале. непрерывная случайная величина считается заданной, если известен вид ее функции распределения вероятностей или функции плотности вероятности.

функцией распределения вероятностей случайной величины   называют функцию одной переменной f такую, что f(x)=p(x

свойства функции распределения.

1. для любого   значения функции распределения заключены в промежутке   .

2.   ;   .

3.   является неубывающей функцией.

4. вероятность попадания случайной величины x в интервал [x1,x2) вычисляют по формуле p(x1≤x

вероятность того, что непрерывная случайная величина x примет конкретное значение a, равно нулю, то есть p(x=a)=0 для любого числа a.

4,4(31 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ