Преобразуем исходное выражение так, чтобы в левой части было произведение, а в правой одно число:
m × n = m + n + 2017 m × n - m - n = 2017 m (n - 1) - n = 2017 m (n - 1) - n + 1 - 1 = 2017 m (n - 1) - (n - 1) = 2018 (n - 1) (m - 1) = 2 × 1019 (других вариантов разложения на простые множители числа 2018 просто нет, т.к. числа д.б. натуральными)
Следовательно, n - 1 = 2; m - 1 = 1009 (или наоборот, что неважно). Итак, n = 3, m = 1010, а их произведение m × n = 3030
Признак делимости на 19 для двухзначного числа: ху делится на 19, когда х+2у делится на 19. Например: 19 => 1+2*9=1+18=19 => 19/19=1
Нам нужно двухзначное число больше 40, которое, при делении на 19, дает остаток 1.
Пусть ху - искомое число
{ 10x+y>40
{x+2y≥19 => x≥19-2y
10(19-2y)+y>40
190-20y+y>40
19y>150
y>7 17/19 => y>7
x≥19-2y≥19-14≥5
1. Имеем: десятки искомого числа ≥5, единицы >7; если предположить, что х=5, у=7, то 5+2*7=19, значит 57 кратно 19: 57/19=3.
Если xy>57, то => 58/19=3(ост.1)
Далее, находим еще двухзначные числа, соответствующие условию:
2. 19*4=76 => 76+1=77 => 77/19=4(ост.1)
3. 19*5=95 => 95+1=96 => 96/19=5(ост.1)
ответ: Существуют 3 числа, делящиеся на 19 с остатком 1: 58; 77; 96