Доказать двумя что оператор Ф:C[a;b]->C[a;b] является сжимающим: A. по определению сжимающего оператора; B. по достаточному признаку сжимающего оператора.
Запишем первое число в виде abc...yz9...9, z ≠ 9, девяток в конце может быть β = 0, 1, 2, ... Тогда второе число имеет вид abc...y(z+1)0...0.
Рассмотрим, на сколько изменилась сумма цифр. – Сумма цифр первого числа: a + b + c + ... + y + z + 9β – Сумма цифр второго числа: a + b + c + ... + y + (z + 1) – Разность сумм цифр равна 9β - 1.
Если обе суммы цифр делятся на 1018, то их разность 9β - 1 тоже делится на 1018, что выполняется, например, для β = 905, при этом 9β - 1 = 8144 = 8 * 1018. Подобрав должным образом abc...yz, можно добиться, чтобы суммы цифр делились на 1018.
Пример двух таких чисел: 99...99099...9 (в начале 113 девяток, в конце 905 девяток, сумма цифр 9 * (113 + 905) = 9 * 1018) и 99...9100...0 (сумма цифр 9 * 113 + 1 = 1018)
Первое, на что надо обратить внимание - корень. Так как он чётной степени, подкоренное выражение должно быть больше или равно 0. Дальше идёт логарифм. В данной функции 5-x² должно быть строго больше 0. Понятно, что эти условия должны выполняться одновременно. Поэтому их надо решать в системе.
Получаем:
После преобразований мы получили два неравенства: 5-x² ≥ 1 и 5-x² >0 Если мы найдём значения x при которых выполняется первое неравенство, то делать тоже самое для второго уже необязательно. Следовательно, для того чтобы найти область определения для заданной функции, нам надо всего лишь решить неравенство 5-x² ≥ 1.
Тогда второе число имеет вид abc...y(z+1)0...0.
Рассмотрим, на сколько изменилась сумма цифр.
– Сумма цифр первого числа: a + b + c + ... + y + z + 9β
– Сумма цифр второго числа: a + b + c + ... + y + (z + 1)
– Разность сумм цифр равна 9β - 1.
Если обе суммы цифр делятся на 1018, то их разность 9β - 1 тоже делится на 1018, что выполняется, например, для β = 905, при этом 9β - 1 = 8144 = 8 * 1018. Подобрав должным образом abc...yz, можно добиться, чтобы суммы цифр делились на 1018.
Пример двух таких чисел:
99...99099...9 (в начале 113 девяток, в конце 905 девяток, сумма цифр 9 * (113 + 905) = 9 * 1018) и 99...9100...0 (сумма цифр 9 * 113 + 1 = 1018)
ответ. Существуют.