Допустим, это не так. Значит остаток чисел от деления на 3 может быть только 1 или 2. Следующее число не может иметь такой же остаток в случае прибавления или вычитания 1 или 2, без обнуления остатка, только смена значения с 1 на 2 и наоборот. При увеличении на 2 остаток также увеличивается в 2 раза, и его значение меняется с 1 на 2 или с 2 на 1 (удвоенный остаток 2 равен 4, что аналогично остатку 1). При уменьшении в 2 раза ситуация аналогичная, обратная рассмотренным примерам с умножением. Мы рассмотрели все возможные случаи. Получается только чередование чисел с остатками ...1, 2, 1, 2... Поскольку число 2015 нечётное, то в конце встречаются два числа с одинаковыми остатками и преобразовать одно число в другое без изменения остатка разрешёнными условием задачи методами невозможно. Налицо противоречие.
Замкнутые самопересекающиеся ломаные в геометрии принято называть звездчатыми многоугольниками. Пример такого многоугольника с семью звеньями — на приложенном рисунке. Рассматривая любое звено этой ломаной, можно сделать вывод, что на этом звене может лежать не более четырёх точек самопересечения - ведь всего ломаная имеет семь звеньев, а три из них (само рассматриваемое звено и два соседних с ним) заведомо не пересекают его. Следовательно, общее число точек самопересечения не может превосходить (7*4)/2=14.
Пошаговое объяснение:
Нехай ціла частина відрізок АВ -х, тоді співвідношення частин відрізків
АВ- 2х, СВ- 8х ,але за умовою одна з частин відрізка на 6 см більша за другу тобто СВ х+ 6 Складемо рівняння:
2/5= х/х+6
2(х+6)= 5х
2х+12= 5х
12= 3х
х=4
АВ= 2х= 2*4=8 см
СВ= 8х= 8*4= 32 см