М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
artyomortega
artyomortega
31.12.2020 17:47 •  Математика

Бабка половину часу кожної доби спала, третину кожної доби танцювала, шосту частину доби - співала. решту частину вона могла присвятити підготовці до зими. скільки часу бабка готувалася до зими?

👇
Ответ:
Werbast
Werbast
31.12.2020

Увы, ваша бабка не могла готовиться к зиме, т.к. на это у нее не оставалось времени в течении суток

\frac{1}{2}+\frac{1}{3}+\frac{1}{6}=\frac{3}{6}+\frac{2}{6}+\frac{1}{6}=\frac{6}{6}=1.

Бабка все сутки то спала, то танцевала, то пела. Ищите себе другую бабку ))).

 

 

4,4(55 оценок)
Открыть все ответы
Ответ:
Kakanya
Kakanya
31.12.2020
Расчет для 1993 года - 
456-128 = 328, делим на М и Д
Д93 = 164,  М93 = 164+128=292.
Для последующих годов пишем формулы
Д(93+n) = Д93+6n = 164+6n
М(93+n) =М93-2n = 292-2n
1a) Всего в 2015. Вычисляем n = 2015-1993 = 22 года.
Подставим в формулу 
В(2015) = В(93)+4n = 456+22*4 = 544 чел. ОТВЕТ
1b) М(93-2n) = Д(93+6n) - поровну М и Д.
164+6n = 292-2n
8n=292-164 =128,   n=16
N=1993+16= 2009 год. - ОТВЕТ
1с) Сколько Всего, когда Д=М-40  ?
164+6n +40 =292-2n
8n = 292-164-40 = 88     n=11   N=1993+11=2004  - год олимпиады.
В(04) = В(93)+4*11 = 456+44 = 500 - ОТВЕТ (М=270  Д=230 В=500)
1d) N  - Д = 2*М
164 +6n = 2*(292-2n) = 584-4n
10n = 584-164 = 420    n = 42    N=1993+42= 2035 - ОТВЕТ
(М=208  Д=416 В=624)
1е) В среднем 550 чел. N=?
550 - В(93)= 550-456 =94 - делим на 2 для среднего  n= 47
n =47    N=1993+47=2040 - ОТВЕТ (В(40)=644  В(16)=548 В(17)=552)
Проверено.
4,4(10 оценок)
Ответ:

Для начала поработаем со вторым выражением. Первые три слагаемых свернем в квадрат разности: ((3x)^{2}-y^{2})^{2}; В следующих двух слагаемых вынесем общий множитель "40": 40(9x^{2}+y^{2})=40((3x)^{2}+y^{2}); В итоге получим следующее уравнение: ((3x)^{2}-y^{2})^{2}-40((3x)^{2}+y^{2})+400=0. В скобках мы видим похожие выражения, отличающиеся лишь знаком посередине (такие выражение называются сопряженными). А хотелось бы видеть там равные (строго говоря тождественные) выражения. Пусть в первой скобке вместо (3x)^{2}-y^{2} будет стоять (3x)^{2}+y^{2}; Это приведет к тому, что придется убавить 2\times 18x^2y^2=4(3xy)^{2}; В итоге: ((3x)^{2}+y^{2})^{2}-40((3x)^{2}+y^{2})+400= 4(3xy)^{2}; Слева стоит квадрат суммы. Уравнение примет вид: ((3x)^{2}+y^{2}-20)^{2}=(6xy)^{2} \Leftrightarrow ((3x)^{2}+y^{2}-20+6xy)((3x)^{2}+y^{2}-20-6xy)=0; Сворачивая еще раз: ((3x+y)^{2}-20)((3x-y)^{2}-20)=0; Получаем серию прямых: \pm 3x+\sqrt{20},\; \pm3x-\sqrt{20}; А теперь приступим к рассмотрению первого уравнения.

Это уравнение задает круг с центром в точке (0, 0) и радиусом \sqrt{2} ; Рассмотрим прямую y=3x+\sqrt{20}; Найдем радиус окружности с центром в начале координат, которая касается данной прямой. Это легко сделать из подобия треугольников. \frac{\sqrt{20}\times 3}{3\times 10\sqrt{2}}=\frac{r}{\sqrt{20}} \Leftrightarrow r=\sqrt{2}; Значит, круг касается всех этих четырех прямых. Достаточно найти только координаты касания с любой из прямых. Это делается так же, как и находился радиус окружности. Для той же прямой это координаты (-\frac{3\sqrt{5}}{5},\; \frac{\sqrt{5}}{5} } ); Ну а все решения:

(\frac{3\sqrt{5}}{5},\; \frac{\sqrt{5}}{5}),\; (\frac{3\sqrt{5}}{5},\; -\frac{\sqrt{5}}{5}),\; (-\frac{3\sqrt{5}}{5},\; \frac{\sqrt{5}}{5}),\; (-\frac{3\sqrt{5}}{5},\; -\frac{\sqrt{5}}{5})

4,6(12 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ