№1.
30 - 17 = 13 девочек в классе
13/30 части класса - составляют девочки
13 - числитель; 30 - знаменатель.
№2.
а) 1 кг = 1 000 г
1 000 * 1/2 = 1000 : 2 = 500 г
1 000 * 3/5 = 1 000 : 5 * 3 = 600 г
б) 1 м = 100 см
100 * 1/4 = 100 : 4 = 25 см
100 * 7/10 = 100 : 10 * 7 = 70 см
в) 1 мин. = 60 сек.
60 * 1/6 = 60 : 6 = 10 сек.
60 * 2/3 = 60 : 3 * 2 = 40 сек.
№3.
2/3 к знаменателю 12:
2/3 к знаменателю 15:
2/3 к знаменателю 36:
К наименьшему общему знаменателю:
3/5 и 2/3:
ответ: 9/15 и 10/15
3/4 и 5/16:
ответ: 12/16 и 5/16
1/4 и 1/6:
ответ: 3/12 и 2/12.
№4.
41/100 нельзя сократить, т.к. 41 является простым числом, т.е. делится только на 1 и само себя.
Еще примеры несократимых дробей:
3/5; 13/20; 17/100; 23/50; 47/50; 107/200.
Сократим дроби:
№5.
Чтобы сравнить дроби, нужно привести их к общему знаменателю:
5/8 > 4/7 , т.к. 49/56 > 32/56
Правильная дробь всегда меньше неправильной:
7/10 < 10/7.
№6.
3 : 5 = 3/5
20 : 25 = 20/25 = 4/5
m : n = m/n
Так же logx(2)=1/log2(x)
Перепишем так систему (фигурная скобка):01, после возведения 2 в эту степень выйдет х>2(знаки сохраняются потому что 2^x больше если больше степень (если число между 0 и 1 то знаки пришлось бы менять но мы возводим 2 в степень))
Logx(2)<=-1 перепишем так -1<=log2(x)<0(если число меньше минус 1 то обратное между -1 и 0 а если число -1 то обратное -1) возводим 2 в эту степень 2^-1<=х<2^0(знаки сохраняются об этом уже говорилось) тогда 1/2<=х<1
Выходит объединение [1/2;1) и (2;+бесконечность)
ответ объединение [1/2;1) и (2;+бесконечность)