частное 5760 и 80= 5760:8=72
разность 268 и 196= 268-196=72
1) аб/6
2) 8целые 2/5ху
3)8 целые 2/3 дс
4) 15абс
Пошаговое объяснение:
В первом примере видно, что можно сократить числитель и знаменатель. Сокращаем 4 и 8; 5 и 15. ответ записываем в столбик и не забываем умножить на буквенные значения( ху)
Во втором примере для начала переводим целое число в неправильную дробь( 6*4 и плюс 3; 1*45 и плюс 11) И только потом приступаем к сокращению. После сокращения дописываем численные значения. ответ переводим в неправильную дробь.
В третьем примере число 32 можно сократить с 24. ответ получается неправильной дробью. Переводим её в смешанное число и добавляем численное значение( д)
В четвёртом, ты же схема. Переводим в неправильную дробь, сокращаем, дописываем численное значение.
7x+3\ \textgreater \ 5(x-4)+1
7x+3\ \textgreater \ 5x-20+1
7x-5x\ \textgreater \ -19-3
2x\ \textgreater \ -22
x\ \textgreater \ -11
2. 2 x^{2} +13x-7\ \textgreater \ 0
D=169+56=225
x_1= \frac{-13+15}{2*2} =0,5; x_2=\frac{-13-15}{2*2} =-7
x∈(-∞;-7)∪(0,5;+∞)
3. 2(1-x) \geq 5x(3x+2)
2-2x \geq 15 x^{2} +10x
2-2x-15 x^{2} -10x \geq 0
-15 x^{2} -12x+2 \geq 0
D=(-12)^2-4*(-15)*2=144+120=264
x_1= \frac{12+2 \sqrt{66} }{-30}= -\frac{6+ \sqrt{66} }{15} ; x_= \frac{12-2 \sqrt{66} }{-30}= -\frac{6- \sqrt{66} }{15}
x∈[-\frac{6+ \sqrt{66} }{15}; -\frac{6- \sqrt{66} }{15} ]
4. 3 x^{2} +5x-8 \geq 0
D=25-4*3*(-8)=25+96=121
x_1= \frac{-5+11}{2*3} =1; x_2= \frac{-5-11}{2*3} =- \frac{8}{3}
x∈(-∞;-8/3]∪[1;+∞)
1)5760:80=72-частное
2)268-196= 72-разность.
72=72