40 ц/га средняя урожайность полей.
Пошаговое объяснение:
Чтобы найти среднюю урожайность, надо вычислить урожайность с каждого поля отдельно. Затем сложить их и разделить на количество полей.
1) 156÷4=39 ц/га- с 1-го поля
2) 246÷6=41 ц/га - со 2-го поля
3) 39+41=80ц/га - общая с 2-х полей
4) 80÷2=40 ц/га средняя урожайность.
Сложить урожай с 2-х полей. Затем вычислить общую площадь этих полей. И разделить общее количество урожая на общую площадь. И вычислим среднюю урожайность полей.
1) 156+246=402 ц/га - общая урожайность.
2) 402÷10=40,2 ц/га - средняя урожайность полей.
ответ: средняя урожайность полей 40,2 ц/га.
tg x определен при тех х, при которых знаменатель отличен от нуля.
Решение первого неравенства : -2 ≤ x ≤ 2
Решение уравнения
cos x=0 ⇒ x = π/2 + πk, k ∈Z
Рисуем отрезок [-2;2] на клетчатой бумаге ! Чтобы можно было отметить точки π/2
(см. рис.1)
2 клеточки = единичному отрезку.
Слева от 0 4 клеточки и справа 4 клеточки.
π равняется 6 клеточкам, а π/2 3 клеточки.
значит на [-2;2] надо отметить две точки π/2 пустым кружком и -π/2
ответ [-2; -π/2) U(-π/2; π/2) U (π/2 ; 2]
2) Функция у = arcsin x определена на отрезке [-1;1]
Значит, -1 ≤ х-1 ≤1
прибавим 1 ко всем частям неравенства
0 ≤ х ≤2
Область определения числителя отрезок [0;2]
В знаменателе логарифмическая функция, она определена при х > 0 и знаменатель должен быть отличен от нуля.
lg x ≠0 ⇒ x≠10⁰, x≠1
Область определения определяется тремя условиями, которые надо записать в системе
-1≤х-1≤1
х>0
lg x≠0
Из отрезка [0;2] убираем точку 0 ( знаменатель определен при х>0) и точку 1 (х≠1)
ответ. (0;1) U (1; 2]
3) В первой дроби подкоренное выражения числителя должно быть неотрицательным
Знаменатель должен быть отличен от 0.
lg определен при х-1 > 0
Итак, три условия в системе
sin x ≥0,5
x≠2
x-1>0
Первому неравенству удовлетворяют х, такие, что
π/4+2πk ≤x≤3π/4 + 2πk, k∈Z
Опять листочек в клеточку:
(см. приложение рис. 2)
(1;2)U(2; 3π/4] U (π/4 + 2πn ; 3π/4 + 2πn), n ∈N
Внимательно! n начинается с 1, потому как решение х >1 обязывает нас взять только те решения тригонометрического неравенства, которые расположены правее 1.