М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Dimka14228
Dimka14228
13.04.2023 07:52 •  Математика

1. Решите задачу, записывая решение столбиком. На комбинате в декабре изготовили 7 163 л сока, а в январе на 678 л сока меньше. Из всего сока 9 789 л разлили в пакеты, а остальной сок – в бутылки. Сколько литров сока разлили в бутылки?

2. Выполните вычисления и сделайте проверку:

900 000 – 32 576 427 816 + 298 795

3. Вычислите, записывая вычисления столбиком:

42 км 230 м – 17 км 580 м 5 ч 30 мин – 50 мин

29 т 350 кг + 18 т 980 кг 9 км – 890 м

4. Переведите:

5 мин 32 с = … с 2 г. 5 мес. = … мес.

5 00 лет = … в. 2 сут. 3 ч = … ч

180 мин = … ч 600 с = … мин

72 ч = … сут. 4 в. = … лет

5. Вставьте пропущенные цифры.

453...+65...8+9...79=... ... 591

1. Решите задачу, записывая решение столбиком.

В одном павильоне книжной ярмарки было 9 895 книг, а в другом – на 1 376 книг больше. Из всех книг 13 297 были для детей, а остальные для взрослых. Сколько было книг для взрослых?

2. Выполните вычисления и сделайте проверку:

800 080 – 54 996 397 631 + 128 679

3. Вычислите, записывая вычисления столбиком:

16 т 290 кг – 8 т 830 кг 6 ч 20 мин – 35 мин

52 км 260 м + 39 км 890 м 10 км – 480 м

4. Переведите:

4 мин 40 с = … с 609лет = … в. … лет

4 г. 8 мес. = … мес. 1 сут. 1 ч = … ч

1 мин 16 с = … с 240 мин. = … ч

72 мес. = … лет 12 в. = … лет

5. Вставьте пропущенные цифры.

671...+5...83+76...9=... ... 626

👇
Ответ:
hjghn
hjghn
13.04.2023

ответ:4.

4мин.40с.=280с.

4г.8мес.=56мес.

1мин.16с.=76с.

72мес.=6лет

2 столбик

609лет=6в.9лет

1сут.1ч=25ч.

240мин.=4ч.

12в.=1200лет.

Пошаговое объяснение:

4,4(84 оценок)
Открыть все ответы
Ответ:
ayato0haruka
ayato0haruka
13.04.2023

Выражение 1)f(x)=2x+5 для дальнейших вычислений представлено в математическом виде как 1). В этом выражении необходимо правую часть перенести со знаком минус в левую часть.

y = x^2-6*x+3

1. Находим интервалы возрастания и убывания. Первая производная.

f'(x) = 2·x-6

Находим нули функции. Для этого приравниваем производную к нулю

2·x-6 = 0

Откуда:

x1 = 3

(-∞ ;3) (3; +∞)

f'(x) < 0 f'(x) > 0

функция убывает функция возрастает

В окрестности точки x = 3 производная функции меняет знак с (-) на (+). Следовательно, точка x = 3 - точка минимума.

y = 1/x-3

Найдем точки разрыва функции.

x1 = 0

1. Находим интервалы возрастания и убывания. Первая производная.

или

Находим нули функции. Для этого приравниваем производную к нулю

1 ≠ 0

Для данного уравнения корней нет.

(-∞ ;0) (0; +∞)

f'(x) < 0 f'(x) < 0

функция убывает функция убывает

Пошаговое объяснение:

Исследование функции с производной

Определение: Точка х0 называется точкой локального максимума, если для любого х из окрестности точки х0 выполняется неравенство: f(x0)>f(x).

Определение: Точка х0 называется точкой локального минимума, если для любого х из окрестности точки х0 выполняется неравенство: f(x0)<f(x).

Точки минимума и максимума функции называются точками экстремума данной функции, а значения функции в этих точках – экстремумами функции.

Точками экстремума могут служить только критические точки I рода, т.е. точки, принадлежащие области определения функции, в которых производная f′(x) обращается в нуль или терпит разрыв.

Правило нахождения экстремумов функции y=f(x) с первой производной

Найти производную функции f′(x).

Найти критические точки по первой производной, т.е. точки, в которых производная обращается в нуль или терпит разрыв.

Исследовать знак первой производной в промежутках, на которые найденные критические точки делят область определения функции f(x). Если на промежутке f′(x)<0, то на этом промежутке функция убывает; если на промежутке f′(x)>0, то на этом промежутке функция возрастает.

Если в окрестности критической точки f′(x) меняет знак с «+» на «-», то эта точка является точкой максимума, если с «-» на «+», то точкой минимума.

Вычислить значения функции в точках минимума и максимума.

С приведенного алгоритма можно найти не только экстремумы функции, но и промежутки возрастания и убывания функции.

ПРИМЕР №1: Найти промежутки монотонности и экстремумы функции: f(x)=x3–3x2.

Решение: Найдем первую производную функции f′(x)=3x2–6x.

Найдем критические точки по первой производной, решив уравнение 3x2–6x=0; 3x(x-2)=0 ;x = 0, x = 2

Исследуем поведение первой производной в критических точках и на промежутках между ними.

x (-∞, 0) 0 (0, 2) 2 (2, +∞)

f′(x) + 0 - 0 +

f(x) возрастает max убывает min возрастает

f(0) = 03 – 3*02 = 0

f(2) = 23 – 3*22 = -4

ответ: Функция возрастает при x∈(-∞ ; 0)∪(2; +∞); функция убывает при x∈(0;2);

точка минимума функции (2;-4); точка максимума функции (0;0).

Правило нахождения экстремумов функции y=f(x) с второй производной

Найти производную f′(x).

Найти стационарные точки данной функции, т.е. точки, в которых f′(x)=0.

Найти вторую производную f″(x).

Исследовать знак второй производной в каждой из стационарных точек. Если при этом вторая производная окажется отрицательной, то функция в такой точке имеет максимум, а если положительной, то – минимум. Если же вторая производная равна нулю, то экстремум функции надо искать с первой производной.

Вычислить значения функции в точках экстремума.

Отсюда следует, что дважды дифференцируемая функция f(x) выпукла на отрезке [a, b], если вторая производная f"(x) ≥ 0 при всех х [a, b].

Все вычисления можно проделать в онлайн режиме.

ПРИМЕР №2. Исследовать на экстремум с второй производной функцию: f(x) = x2 – 2x - 3.

Решение: Находим производную: f′(x) = 2x - 2.

Решая уравнение f′(x) = 0, получим стационарную точку х=1. Найдем теперь вторую производную: f″(x) = 2.

Так как вторая производная в стационарной точке положительна, f″(1) = 2 > 0, то при x = 1 функция имеет минимум: fmin = f(1) = -4.

ответ: Точка минимума имеет координаты (1; -4).

Если что я учитель по Алгебре

4,4(13 оценок)
Ответ:
Stanislava153
Stanislava153
13.04.2023

1.Если х — число телевизоров на втором складе, то на первой — 2х.

Выходит, 2х-25=х+17.

2.пусть в первом бидоне было х литров молока,тогда во втором 3х,значит:

3х-5=х+5

2х=10

х=5л-в первом бидоне

3х=15л-во втором.

3.На первой стоянке было - Х , тогда на второй 4Х. Со второй убрали 96 машин : 4Х-96 .На первую привезли 96 машин : Х+96, и стало поровну. Составим уравнение:

4Х-96=Х+96

4Х-Х=96+96

3Х=192

Х=192÷3

Х=64 (м)- было на первой стоянке

64×4=256 (м)- было на второй стоянке

ответ: на первой стоянке первоначально было 64 машины,

на второй стоянке первоначально было 256 машин.

4,4(3 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ