1. б) (-3; 8]
2. а)
3. x∈ [-1; 2)
4. x∈ (-3; +∞)
5. x∈ (-1,5; 6]
6. x∈ [1/5; 2]
7. x∈ (-∞; 12]
8. x∈ [-2; 3]
Пошаговое объяснение:
1. Из граничных точек точка -3 отмечена окружностью, поэтому не принадлежит ко множеству, точка 8 отмечен кругом, поэтому принадлежит ко множеству. Если граничное значение не принадлежит ко множеству, то в числовом интервале используется круглая скобка, а если граничное значение принадлежит ко множеству, то в числовом интервале используется квадратная скобка. Поэтому б) (-3; 8]
2. Дано х ≤ -5, что означает все точки множества меньше либо равно -5 (то есть лежат слева от -5) и множество снизу не ограничено. Поэтому ответ а) подходит.
3.
Тогда имеет место двойное неравенство: -1≤ х < 2. ответ: [-1; 2)
4.
Отсюда x>-3 или x∈ (-3; +∞)
5. -6 ≤ 6-2x < 9
-6-6 ≤ -2x < 9-6
-12 ≤ -2x < 3
-12:(-2) ≥ x > 3:(-2)
-1,5 < x ≤ 6 или x∈ (-1,5; 6]
6. При каких значениях переменной имеет смысл выражение
Данное выражение имеет смысл, если подкоренные выражения не отрицательные:
1/5 ≤ x ≤ 2 или x∈ [1/5; 2]
7. Решите совокупность неравенств
Отсюда х ≤ 12 или x∈ (-∞; 12]
8.
Отсюда -2 ≤ х ≤ 3 или x∈ [-2; 3]
26.
Пошаговое объяснение:
Пусть один из средних членов пропорции равен х, тогда второй средний член равен (7-х).
По основному свойству пропорции
х (7 - х) = 8
- х² + 7х - 8 = 0
х² - 7х + 8 = 0
D = 49 - 32 = 17
x1 = (7+√17)/2;
x2 = (7-√17)/2.
Найдём произведение двух чисел, которые больше средних членов этой пропорции на 2
единицы:
(7 + 4 +√17)/2 • (7 + 4 - √17)/2 = (11+√17)(11-√17)/4 = (121 - 17)/4 = 104/4 = 26.
или так:
(х1 + 2)(х2 + 2) = х1•х2 + 2•х1 + 2•х2 + 4 =
= х1•х2 + 2•(х1 + х2) + 4
По формулам Виета
х1•х2 = 8; х1 + х2 = 7; тогда
(х1 + 2)(х2 + 2) = 8 + 2•(7) + 4 = 8 + 14 + 4 = 26
1. Записать числа, противоположные данным: +45, -7, ½, -98, 0.
-45, 7, -1/2, 98 , 0
2.Найти модуль чисел : +67, -35, 43, -4/5, +7/8, 2/3.
67, 35, 43, 4/5, 7/8, 2/3
3. Вычислить:
1) |+9|-|-9|+2 ; = 9 - 9 + 2 = 2
2) |-23|-|5|-|+6|-8 = 23 - 5 -6 - 8 = 4