а) (х+1)²>0 х∈(-∞;-1)∪(-1;+∞), т.к. при х=-1 левая часть обращается в нуль. но нуль не может быть больше нуля. ответ объединение двух промежутков.
б) 4х²-х+9<0 дискриминант левой части равен 1-4*36<0 a=4>0, значит, для любого действительного х левая часть неравенства больше нуля. нулю она тоже не равна. т.к. дискриминант меньше нуля. а это означает. что неравенство не имеет решений.
с) -х²+4х-7=0, дискриминант 16-28 отрицательный. значит. парабола не пересекается с осью ох, находится ниже оси. т.к. первый коэффициент равен минус один, ветви направлены вниз, значит, для любого х левая часть меньше, а не больше нуля. т.е. неравенство решений не имеет.
д) (х-3)(х+3)<0 решим методом интервалов. корни левой части ±3
___-33
+ - +
х∈(-3;3)
В решении.
Пошаговое объяснение:
Задание 9.
В салате 3 + 4 + 5 =12 (частей).
1) Найти вес 1 части салата:
9,6 : 12 = 0,8 (кг)
2) Найти вес перца:
0,8 * 3 = 2,4 (кг)
3) Найти вес огурцов:
0,8 * 4 = 3,2 (кг)
4) Найти вес помидоров:
0,8 * 5 = 4,0 (кг)
Проверка:
2,4 + 3,2 + 4 = 9,6 (кг), верно.
Задание 10.
х - первое число.
х+24,8 - второе число.
Среднее арифметическое этих чисел = 31 и 3/5 = 31,6
По условию задачи уравнение:
[x + (x+24,8)] : 2 = 31,6
(2х + 24,8) : 2 = 31,6
(2х + 24,8) = 31,6 * 2
2х + 24,8 = 63,2
2х = 63,2 - 24,8
2х = 38,4
х= 38,4/2
х= 19,2 - первое число.
19,2 + 24,8 = 44 - второе число.
Проверка:
(19,2 + 44) : 2 = 31,6, верно.
1:2,5
2.11
3.129
4.60
5.54
6.4650