Сколькими можно, продвигаясь от буквы к букве, прочитать на рисунке справа слово «треугольник»? Один из вариантов маршрута там указан сколько всего вариантов с учётом указанного
АВСЕ - пирамида с вершиной Е. В основании лежит правильный тр-ник, для которого радиус описанной окружности в два раза больше радиуса описанной окружности. r=R/2. ОК=ОВ/2=2а/2=а. ЕК - апофема на сторону АС. В тр-ке ЕКО ЕК²=ЕО²+ОК²=3а²+а²=4а², ЕК=2а - апофема. б) ЕК/ОК=2а/а=2. В прямоугольном треугольнике ЕОК гипотенуза ЕК вдвое больше катета ОК, значит ∠КЕО=30°, следовательно ∠ЕКО=60° - угол между боковой гранью и основанием. в) Площадь боковой поверхности: Sб=Р·l/2, где Р - периметр основания, l - апофема. R=AB/√3 ⇒ AB=R√3=2a√3. P=3AB=6a√3. Sб=6a√3·2a/2=6a²√3 (ед²).
угол DAB=45◦
AC-биссектриса
Наименьшее основание (CB) =52
Решение:
т.к АС-биссектриса, то угол САВ=углу САD=22,5◦
Проведем высоту BH из вершины B на сторону AD:получим прямоугольник HDCB и треугольник ABH
Рассмотрим треугольник ABH:
угол HAB=45◦ по условию
угол AHB=90◦
следовательно угол ABH=45◦
и следовательно треугольник ABH равнобедренный (AH=HB)
Рассмотрим треугольник ABC:
угол ABC=90◦+45◦=135◦
следовательно угол ACB=180◦-(135◦+22,5◦)=22,5◦
Значит треугольник ABC равнобедренный (CB=BA=52)
Вернемся к треугольнику ABH:
AH=HB=x; AB=52
x*x=52
x=√52
Рассмотрим прямоугольник HDCB:
DH=CB=52
BH=√52
следовательно BD=√(52^2+(√52)^2)=√(2704+52)=√2756≈52,5
Ответ: BD=52,5