На последнем озере село половина всех гусей и еще полгуся и оказалось, что это все летевшие гуси. значит, полгуся — это половина всех гусей, подлетевших к последнему озеру, а всего их было 0,5·2=1 гусь. на предпоследнем озере село половина всех гусей, подлетевших к нему, и еще полгуся, а еще один гусь полетел на последнее озеро. значит, к этому озеру подлетело (1 + 0,5)·2=3 гуся. рассуждая таким образом дальше, получим, что к пятому озеру подлетело 7 гусей, к четвертому — 15 гусей, к третьему — 31 гусь, ко второму — 63 гуся и, наконец, к первому — 127 гусей.
Удобно записать в виде таблицы всевозможные простые числа, отметив при этом участвующие в их записи цифр (картинка). Видно, что цифры 2, 4 и 5 могут участвовать всего в двух числах, причем во всех случаях одно из чисел - вариант ответа. Предположим, что числа 2 нет в расстановке. Тогда, цифра 2 записывается в составе числа 23. Оставшиеся числа 41 и 5 отлично удовлетворяют условию. Вывод? число 2 может отсутствовать Предположим, что числа 41 нет в расстановке.Тогда, цифра 4 записывается в составе числа 43. Остались числа 2 и 5. Но цифра 1 осталась незадействованной. Значит, без участия числа 41 такая расстановка невозможна. ответ: 41
-11/25 = - (11 * 4) / (25 * 4) = - 44/100;
-21/-28 = 3/4 = (3 * 25) / (4 * 25) = 75/100