ответ:1. На полке в один ряд стоят книги. Энциклопедия стоит пятой слева и семнадцатой справа. Сколько книг на полке?
ответ. 21 книга.
2. Двое поделили между собой 7 рублей, причем один из них получил на 3 рубля больше другого. Сколько кому досталось?
ответ. Одному — 2 рубля, другому — 5 рублей.
3. Число 2002 "симметричное", т.е. читается одинаково слева-направо и справа-налево. Напишите следующее за ним симметричное число.
ответ. 2112.
4. Торговец купил корову за 7 долларов, продал ее за 8, потом вновь купил ту же корову за 9 долларов и опять продал за 10. Какую прибыль он получил?
ответ. 2 доллара.
Пошаговое объяснение:
Правила умножения и деления алгебраических дробей
Умножение и деление алгебраических дробей выполняется по тем же правилам, по которым проводятся соответствующие действия с обыкновенными дробями. Напомним их.
Нам известно, что при умножении обыкновенных дробей отдельно перемножаются числители и отдельно – знаменатели, первое произведение записывается числителем, а второе – знаменателем. Например, .
А деление обыкновенных дробей заменяется умножением на дробь, обратную делителю. К примеру, .
Теперь можно увидеть отчетливое сходство с правилами умножения и деления алгебраических дробей, которые мы сейчас и сформулируем.
Умножение двух и вообще любого числа алгебраических дробей в результате дает дробь, числитель которой равен произведению числителей, а знаменатель – произведению знаменателей перемножаемых дробей. Этому правилу отвечает равенство , где a, b, c и d – некоторые многочлены, причем b и d – ненулевые.
Чтобы разделить одну алгебраическую дробь на другую, нужно первую дробь умножить на дробь, обратную второй. То есть, деление алгебраических дробей выполняется следующим образом , где a, b, c и d – некоторые многочлены, причем b, c и d – ненулевые.
Здесь стоит обратить внимание на то, что под алгебраической дробью, обратной данной, понимают такую дробь, произведение которой с исходной тождественно равно единице. То есть, взаимно обратные алгебраические дроби определяются аналогично взаимно обратным числам. И из того, как мы определили умножение алгебраических дробей, следует, что взаимно обратные алгебраические дроби различаются тем, что у них числители и знаменатели переставлены местами. Например, обратной к алгебраической дроби будет дробь .
Пошаговое объяснение:
Дыня: 2100(г); Арбуз:2800(г); Помело:900(г)