ВО - высота, ВО = 6 см, угол А = 30 градусам, угол АОВ = 90 градусов,
ВО - катет противолежащего угла А = 30 градусам равен половине гипотенузы АВ. АВ = 2ВО, АВ = 2*6=12 см.
Рассмотрим треугольник ОВС:
АО=ОС - по условию, АО, ОС - катеты треугольников АВО, ОВС.
ВО - катет треугольника ОВС.
угол ВОС = 90 градусов.
Треугольник АВО = треугольнику ОВС. ПО первому признаку равенства треугольников: если два катета одного прямоугольного треугольника соответственно равны двум катетам другого прямоугольного треугольника, то такие треугольники равны.
А) S = vt => v = S/t и t = S/v - то есть, чем больше скорость пешехода, тем меньше времени он затратит на преодоление того же расстояния, и наоборот, - чем меньше скорость пешехода, тем больше времени он затратит на преодоление того же расстояния.
в) S = ab => a = S/b - то есть, чем меньше ширина комнаты при заданной площади, тем больше ее длина и наоборот, - чем больше ширина комнаты при заданной площади, тем меньше ее длина.
Остальные пункты являются примерами прямо пропорциональной зависимости.
Пошаговое объяснение:
рассмотрим треугольник АВО:
ВО - высота, ВО = 6 см, угол А = 30 градусам, угол АОВ = 90 градусов,
ВО - катет противолежащего угла А = 30 градусам равен половине гипотенузы АВ. АВ = 2ВО, АВ = 2*6=12 см.
Рассмотрим треугольник ОВС:
АО=ОС - по условию, АО, ОС - катеты треугольников АВО, ОВС.
ВО - катет треугольника ОВС.
угол ВОС = 90 градусов.
Треугольник АВО = треугольнику ОВС. ПО первому признаку равенства треугольников: если два катета одного прямоугольного треугольника соответственно равны двум катетам другого прямоугольного треугольника, то такие треугольники равны.