ответ:
пошаговое объяснение:
число выпадения гербов подчинено биномиальному закону с параметрами n=6, p=q=0,5.
вероятность выпадения герба k < 6 раз вычисляется по формуле бернулли
p(k)=(с из 6 по k)•p^k•q^(n-k).
менее двух раз это ноль или один раз, поэтому
p(k < 2)=p(0)+p(1).
p(0)= (с из 6 по 0)•0,5^6=0,015625;
p(1)= (с из 6 по 1)•0,5^6=6•0,015625= 0,09375.
p(k < 2)=p(0)+p(1)= 0,109375.
не менее двух раз это противоположное событие тому, что герб выпадет менее двух раз, поэтому
p(k > = 2)=1-p(k < 2)=1-0,109375=0,890625.
по правилам умножения можем записать так
4+2х>0 и 12-3х>0
2x>-4 12>3x
x>-2 4>x
x>-2 x<4
х є (-2; беск) х є (4; - беск)
Решением данного неравенства будет являться пересечение двух найденных промежутков, то есть получим что х є (-2;4)
ОБЯЗАТЕЛЬНО необходимо на ось Ох нанести точку -2 и 4 и штриховкой от -2 до + бесконечности показать решения первого неравенства .а потом штриховкой от 4 до - бесконечности показать решения второго неравенства.
Отввет: (-2;4)