Различают следующие виды случайных событий: достоверные, невозможные и случайные. События обозначаются большими латинскими буквами А, В, С,...,Z. Достоверное событие всегда происходит в результате наблюдения или испытания. Достоверное событие обозначается символом – W.
Невозможное событие никогда не происходит в результате наблюдения или испытания. Невозможное событие обозначается символом – Æ.
Пример. Если в корзине только персики, то достать из корзины персик является достоверным событием, а достать лимон является невозможным событием.
Случайное событие – это такое событие, которое в результате наблюдения или испытания может произойти, а может и не произойти.
Пример. Студент сдаёт экзамен. Экзамен сдан. Это событие случайное, так как студент мог и не сдать экзамен.
Кроме того, события могут быть совместными и несовместными, зависимыми или независимыми. Два события называются совместными, если появление одного из них не исключает появления другого в одном и том же испытании. Примеры совместных событий: два стрелка стреляют по мишени, два спортсмена одновременно бегут. Случайные события А и В называются несовместными, если при данном испытании появление одного из них исключает появление другого события. Несовместные события: день и ночь, студент одновременно едет на занятие и сдаёт экзамен, число иррациональное и чётное.
Событие А называется независимым от события В, если вероятность появления события А не зависит от того произошло событие В или нет. Пример. Два студента одновременно сдают экзамен независимо друг от друга. Это событие совместное и независимое. Событие А называется зависимым от события В, если вероятность появления события А зависит от того произошло или не произошло событие В. Пример. Работник получит оплату труда в зависимости от качества её выполнения.
Равновозможные события – это такие события, которые имеют одинаковые возможности для их появления. Полная группа событий – это совокупность единственно возможных событий при данном испытании. Пример. Студент может сдать экзамен на любую оценку. В данном случае возможны следующие события: студент может сдать экзамен на 5, студент может сдать экзамен на 4, студент может сдать экзамен на 3. Эти события образуют полную группу.
Противоположные события. Два случайные события А и В называются противоположными, если они несовместны и образуют полную группу событий. Примеры: студент может сдать или не сдать экзамен, день и ночь.
Конкретный результат испытания называется элементарным событием. Совокупность всех возможных, различных, конкретных исходов испытаний называется множеством элементарных событий.
Сложным событием (исходом) называется произвольное подмножество множества элементарных событий. Сложное событие в результате испытания наступает тогда и только тогда, когда в результате испытаний произошло элементарное событие, принадлежащее сложному. Например, испытание – подбрасывание кубика. Элементарное событие – выпадение грани с числом «5». Сложное событие – выпадение грани с нечётным числом.
ДАНО S=60 км - расстояние АВ V1-V2=4 - разность скоростей T2=T1+ 01:15 = 1 1/4 ч- время опоздания второго НАЙТИ t2(12)=? - время 2-го на путь в 12 км РЕШЕНИЕ Мысли: 1- опоздал из-за разности скоростей. 2 - используем формулу пути 3- два неизвестных -нужно два уравнения. РЕШЕНИЕ. Уравнение пути S = V*T T=S/V 1) S/V2 - S/V1 = 1 1/4 - разность времен - время опоздания 2) V2 = 4 - V1 Упрощаем уравнение 1) - приводим к общему знаменателю. 3) S/V2-S/V1 =5/4 S*(V1-V2) = 5/4*V1*V2 =5/4V1² - 5*V1 или после умножения на 4. получаем квадратное уравнение. 5V1² -20*V1-960 = 0 Корень уравнения V1 = 16 км/ч ( и V= -12) - скорость 1-го Скорость 2-го V2 = 16-4 = 12 км/ч И время на 12 км пути со скоростью 12 км/ч. t2(12) = 12/12 = 1 час. ОТВЕТ: 2-му велосипедисту потребуется 1 час.
По перпендикулярным дорогам означает, что с точки расставания направление дорог составляют 90°, т.е. м. и д. идут по катетам прямоугольного треугольника и расстояние между ними это гипотенуза. Зa t времени м. (мальчик) пройдет a = 4t км За t вр. д, b = 3t км По Пифогору c² = a² + b² ⇒ c = √[(4t)² + (3t)² = √(25·t²) = 5t то есть м. и д. удаляются со скоростью 5 км/ч. t= 2 ч. S=c =5t = 5·2 = 10 км t = 45 min. = 45/60 ч. = 3/4 ч. S = 5 · 3/4 = 3,75 км t = 1ч 21мин = (1+21/60) ч,=27/20 ч S = 5 · 27/20 = 6,75 km t = 1ч 51 мин =37/20 ч. S = 5 · 37/20 = 9,25 km
Пошаговое объяснение:
Различают следующие виды случайных событий: достоверные, невозможные и случайные. События обозначаются большими латинскими буквами А, В, С,...,Z. Достоверное событие всегда происходит в результате наблюдения или испытания. Достоверное событие обозначается символом – W.
Невозможное событие никогда не происходит в результате наблюдения или испытания. Невозможное событие обозначается символом – Æ.
Пример. Если в корзине только персики, то достать из корзины персик является достоверным событием, а достать лимон является невозможным событием.
Случайное событие – это такое событие, которое в результате наблюдения или испытания может произойти, а может и не произойти.
Пример. Студент сдаёт экзамен. Экзамен сдан. Это событие случайное, так как студент мог и не сдать экзамен.
Кроме того, события могут быть совместными и несовместными, зависимыми или независимыми. Два события называются совместными, если появление одного из них не исключает появления другого в одном и том же испытании. Примеры совместных событий: два стрелка стреляют по мишени, два спортсмена одновременно бегут. Случайные события А и В называются несовместными, если при данном испытании появление одного из них исключает появление другого события. Несовместные события: день и ночь, студент одновременно едет на занятие и сдаёт экзамен, число иррациональное и чётное.
Событие А называется независимым от события В, если вероятность появления события А не зависит от того произошло событие В или нет. Пример. Два студента одновременно сдают экзамен независимо друг от друга. Это событие совместное и независимое. Событие А называется зависимым от события В, если вероятность появления события А зависит от того произошло или не произошло событие В. Пример. Работник получит оплату труда в зависимости от качества её выполнения.
Равновозможные события – это такие события, которые имеют одинаковые возможности для их появления. Полная группа событий – это совокупность единственно возможных событий при данном испытании. Пример. Студент может сдать экзамен на любую оценку. В данном случае возможны следующие события: студент может сдать экзамен на 5, студент может сдать экзамен на 4, студент может сдать экзамен на 3. Эти события образуют полную группу.
Противоположные события. Два случайные события А и В называются противоположными, если они несовместны и образуют полную группу событий. Примеры: студент может сдать или не сдать экзамен, день и ночь.
Конкретный результат испытания называется элементарным событием. Совокупность всех возможных, различных, конкретных исходов испытаний называется множеством элементарных событий.
Сложным событием (исходом) называется произвольное подмножество множества элементарных событий. Сложное событие в результате испытания наступает тогда и только тогда, когда в результате испытаний произошло элементарное событие, принадлежащее сложному. Например, испытание – подбрасывание кубика. Элементарное событие – выпадение грани с числом «5». Сложное событие – выпадение грани с нечётным числом.