ЗАДАНИЯ 1. Прямая a пересекает плоскость β в точке C, и образует с плоскостью угол 60°. P∈a, точка R - проекция точки P на плоскость β. PC=14 см. Найди RC.
2. К плоскости α проведена наклонная, длина которой равна 26 см, проекция наклонной равна 10 см . На каком расстоянии от плоскости находится точка, из которой проведена наклонная?
3. К плоскости α проведена наклонная AB (A∈α). Длина наклонной равна 8 см, наклонная с плоскостью образует угол 45°. Вычисли, на каком расстоянии от плоскости находится точка B.
4. Наклонная AD с плоскостью α образует угол 300, а наклонная DC с плоскостью α образует угол 450. Длина перпендикуляра DB равна 28 см. Вычисли длины обеих наклонных.
5. Длина отрезка VB равна 20 м. Он пересекает плоскость в точке O. Расстояние от концов отрезка до плоскости соответственно равны 8 м и 2 м. Найди острый угол, который образует отрезок VB с плоскостью.
6. Проекции наклонных AD и DC на плоскости α равны соответственно 8 см и 8 см, а угол между ними равен 120°.
Вычисли расстояние между концами проекций наклонных.
7. Равнобедренный треугольник ABE находится в плоскости α. Боковые стороны треугольника ABE равны по 20 см, а сторона основания AE=32 см. К этой плоскости проведены перпендикуляр CB, который равен 9 см, и наклонные CA и CE. Вычислите расстояние от точки C до стороны треугольника AE.
8. Прямоугольный треугольник MBE (∢M=90°) находится в плоскости α. BE=13 см, а ME=5 см. К этой плоскости проведён перпендикуляр CB длиной 5 см. Вычисли расстояние от точки C до стороны треугольника ME.
РЕШИТЬ ОСТАЛОСЬ 2 ДНЯ
Прежде чем вычислить сумму квадратов этих чисел,
найдём эти числа, для этого обозначим эти числа за (х) и (у),
тогда согласно условия задачи:
х+у=15 (1)
Средне-арифметическое этих двух чисел равно:
(х+у)/2
Средне геометрическое этих двух чисел равно:
√(х*у)
25% средне геометрического числа равно:
25% *√(ху) :100%=0,25*√(ху)=0,25√(ху)
Согласно условия задачи составим второе уравнение:
(х+у)/2 - √(ху)=0,25√(ху)
(х+у)/2=0,25√(ху)+√(ху)
(х+у)/2=1,25√(ху)
(х+у)=2*1,25√(ху)
х+у=2,5√(ху) (2)
Решим получившуюся систему из двух уравнений:
х+у=15
х+у=2,5√(ху)
Из первого уравнения системы уравнений найдём значение (х)
х=15-у -подставим значение (х) во второе уравнение
15-у+у=2,5√[(15-y)*y]
15=2,5√(15y-y²) чтобы избавиться от иррациональности в правой части, возведём левую и правую части уравнения в квадрат:
225=6,25*(15у-у²)
225=93,75у-6,25у²
6,25у²-93,75у+225=0
у1,2=(93,75+-D)/2*6,25
D=√(93,75² -4*6,25*225)=√(8789,0625-5625)=√3164,0625=56.25
у1,2=(93,75+-56,25)/12,5
у1=(93,75+56,26)/12,5=150/12,5=12
у2=(93,75-56,25)/12,5=37,5/12,5=3
Подставим значения (у1) и (у2) в х=15-у
х1=15-12=3
х2=15-3=12
Из получившихся чисел можно сделать вывод, что эти два числа 12 и 3
Отсюда сумма квадратов этих чисел равна:
12²+3²=144+9=153
ответ: 153