Если из точки, с которой проведены перпендикуляры к сторонам многоугольника провести еще и прямые соединяющие концы сторон многоугольника, то мы получим n-теугольников. Площадь одного такого треугольника равна
(1/2)*l*a, где l – перпендикуляр к стороне многоугольника, а а-сторона многоугольника.
Сложив площади всех треугольников, мы получим площадь многоугольника S=(n/2)*(l1+l2+… +ln)*a
С другой стороны, площадь многоугольника вписанного в окружность равна
Так как в трапеции угол А =60, угол ABD=90, то угол ADB=30. Так как BD биссектриса угла D, то угол D=60. Угол А равен углу D, значит трапеция равнобедренная, т. е. AB=CD. Сумма углов трапеции 360, значит угол B=360-(60+60)/2=120. Угол CBD=угол B-угол ABD=120-90=30. Угол BDC тоже равен 30 (т. к. BD биссектриса) , значит треугольник BCD равнобедренный, BC=CD=AB. Если провести высоту BH, то в треугольнике ABH угол А=60, AHB=90, следовательно угол ABH=30. В прямоугольном треугольнике против угла в 30 лежит катет, равный половине гипотенузы, AH=1/2 AB. Значит AD=BC+2AH=BC+AB=2AB. Периметр=AB+BC+CD+AD=AB+AB+AB+2AB=5AB. AB=Периметр/5, AB=20/5=4. AD=2AB=2*4=8
Если из точки, с которой проведены перпендикуляры к сторонам многоугольника провести еще и прямые соединяющие концы сторон многоугольника, то мы получим n-теугольников. Площадь одного такого треугольника равна
(1/2)*l*a, где l – перпендикуляр к стороне многоугольника, а а-сторона многоугольника.
Сложив площади всех треугольников, мы получим площадь многоугольника S=(n/2)*(l1+l2+… +ln)*a
С другой стороны, площадь многоугольника вписанного в окружность равна
S=r*n*a/2
То есть
(n/2)*(l1+l2+… +ln)*a= r*n*a/2
То есть
(l1+l2+… +ln)*a= r*a
Что и надо было доказать