должен остаться ноль то предпоследняя цифра этого числа 0.
Если же мы будем вычеркивать предпоследнюю цифру и выше тоже 0. То последние 2 цифры нули.
Число делится на 3 только когда когда сумма цифр делится на 3
Если в этом числе зачеркунуть его последнюю цифру 0
То сумма цифр не изменится. А значит и сумма цифр данного числа делится на 3. При вычитании остальных цифр выходит что все цифры должны делится на 3 тк если хоть 1 не делится на 3 ,то при вычетании этой цифры сумма на 3 делится уже не будет.
А вот теперь самое трудное. По признаку делимости на 7 оно делится на 7 когда сумма числа десятков с утроенным числом единиц делится на 7.
Тк зачеркивая 1 цифру 0 ее возможная делимость на 7 не изменится. ТО и исходное число делится на 7.
То у этого числа последняя 0 а утроенное число десятков 3x
Вычеркнем из этого числа 3 цифру кроме то число десятков останется 0. По условию цифры только 3 6 9 0(Уберем 2 последние нуля на делимость на 7 они не влияют) то число десятков уменьшится на 0 3 6 9 и уменьшится в 10 раз то число десятков при цифрах 3 6 9 0 Уменьшится на число не кратное 7 ,но тогда исхожное число на 7 делится не будет. То последняя цифра 0.
Далее снова убераем лишний ноль и продолжая теже рассуждения выйдет что все цифры должны быть нули. То есть 000000000
Пусть вначале(до первой партии) у А было Х р., у В У р., у С М р. Пусть 4в первой партии проиграл С, тогда у А 2Х р., у В 2У р., у С М р. Пусть во второй партии проиграл В, тогда у А 4Х р., у В 2У р., у С 2М р. Так как каждый проиграл по одному разу, то в третьей партии пройграл А; и после неё у С 4М р.; у В 4У р., у А 4Х р. Так как после трёх партий у всех было одинаковое количество денег(48 р.), то 4Х=4У=4М=48 р. Получили уравнения: 4Х=48; 4У=48; 4М=48; 4Х=48; 4У=48; 4М=48; Х=48/4; У=48/4; М=48/4; Х=12; У=12; М=12; Получили, что Х=12 р.; У=12 р.; М=12 р.; Значит, у всех в начале было по 12 рублей. ответ: у А было 12 р., у В было 12 р., у С было 12 р.
ответ: нет такого
Пошаговое объяснение:
Может кондоватый но ладно.
Это число делится на 10 тк делится на 2 и 5
То тк при вычеркивании последней цифры
должен остаться ноль то предпоследняя цифра этого числа 0.
Если же мы будем вычеркивать предпоследнюю цифру и выше тоже 0. То последние 2 цифры нули.
Число делится на 3 только когда когда сумма цифр делится на 3
Если в этом числе зачеркунуть его последнюю цифру 0
То сумма цифр не изменится. А значит и сумма цифр данного числа делится на 3. При вычитании остальных цифр выходит что все цифры должны делится на 3 тк если хоть 1 не делится на 3 ,то при вычетании этой цифры сумма на 3 делится уже не будет.
А вот теперь самое трудное. По признаку делимости на 7 оно делится на 7 когда сумма числа десятков с утроенным числом единиц делится на 7.
Тк зачеркивая 1 цифру 0 ее возможная делимость на 7 не изменится. ТО и исходное число делится на 7.
То у этого числа последняя 0 а утроенное число десятков 3x
Вычеркнем из этого числа 3 цифру кроме то число десятков останется 0. По условию цифры только 3 6 9 0(Уберем 2 последние нуля на делимость на 7 они не влияют) то число десятков уменьшится на 0 3 6 9 и уменьшится в 10 раз то число десятков при цифрах 3 6 9 0 Уменьшится на число не кратное 7 ,но тогда исхожное число на 7 делится не будет. То последняя цифра 0.
Далее снова убераем лишний ноль и продолжая теже рассуждения выйдет что все цифры должны быть нули. То есть 000000000
Что невозможно.