1.
1) Выразим у через х.
-2x + y = 8
y = 8 + 2x
Теперь, подставим у, выраженное через х в первое уравнение:
-2х + (8 + 2х) = 8
Раскроем скобки:
-2х + 2х + 8 = 8
Мы видим, что иксы взаимоуничтожаются, так что уравнение равно при любом х.
Например, при х = 1:
у = 8 + 2*1 = 10, подставляем в исходное уравнение: -2*1 + 10 = 8 - верное равенство.
Возьмём х = 2 : у = 8 + 2*2 = 12 => -2*2 + 12 = 8
2)Решаем также:
х - 3у=6
-3у = 6 - х
3у = х - 6
у = (х - 6) / 3
Решения находим также:
х = 3 => у = (3-6) / 3 = -1
3 -3 * (-1) = 3 + 3 = 6 - всё верно.
х=10 => у = (10 - 6 ) / 3 = 4/3
10 - 3 * 4/3 = 10 - 4 = 6 - всё верно.
2.
1) 4х - у = 8
4х = 8 + у
х = (8 + у) / 4
у = 4 => x = (8 + 4) / 4 = 3
исх. уравнение: 4*3 - 4 = 12 - 4 =8
y = 0 = > x = (8 + 0) / 4 = 2
исх. уравнение: 4*2 - 0 = 8
2) х + 3у = -2
х = -2 - 3у
у = 3 => x = -2 - 3*3 = -11
исх. уравнение: -11 + 3*3 = -2
у = 5 => х = -2 -3*5 = -17
исх. уравнение: -17 + 15 = -2
3. 3х + у = 6
Приводим к стандартному виду:
у = 6 -3х
( таблица)
x | 0 | 1 |
y | 6 | 3 |
Здесь по формуле вернулли с начало теорема Если вероятность p наступления события Α в каждом испытании постоянна, то вероятность того, что событие A наступит k раз в n независимых испытаниях, равна
P(k.n)=Cn k *p^k*q^(n-k) то есть понятно что веротяность выпадение герба такое же что и выпадение другого , то есть аверс и реверс равны 1/2 или 50 на 50!
всего как с уловия 5 раз и нам нужно их распределить ! по формуле бернулли получаем
С 5 0 = 5!/0!(5-0)!= 1*2*3*4*5/1*1*2*3*4*5=1 то ест 1!
С 5 1 =5!/1!(5-1)!=1*2*3*4*5/1*1*2*3*4=5 то есть 5 !
и так далее!
P( 5 и 0)=1*1/2^0*1/2^5=1*1/32=1/32
P( 5 и 1)=5*1/2*1/2^4=5/2*1/16=5/32
P(5 и 6)=10*1/2^2*1/2^3=10/4*1/8=10/32
P(5 и 4)=10*1/2^3*1/2^2=10/8*1/4=10/32
P(5 и 5) =5*1/2^4*1/2=5/32
P( 5 и 5)=1*1/2^5*1/2^0=1/32
то есть вот и будет распрделение обычно ее в таблицу но можно и так
здесь C n k число сочетаний
число сочетаний по формуле чтобы понятней было