ДУМАЕМ.
1. Радиус окружности равен 5.
2. От прямой из точки М надо построить перпендикуляр и найти точку на расстоянии R = √5. Таких точек будет две. Рисунок к задаче в приложении.
РЕШЕНИЕ
Уравнение окружности: (x-a)² + (y-b)² = R² = 5. (R ≈ 2.24) - надо найти координаты центра окружности - О(a,b)
1) Уравнение касательной: x - 2*y - 1 = 0 - преобразуем.
2*y = x - 1 и y = 0.5*x - 0.5 = k*x + b.
2) Уравнение перпендикуляра (радиуса)
у = - 2*х (+7 не влияет).
Отношение катетов 1 к 2. Вспоминаем теорему Пифагора.
Катеты оказались равными 1 и 2.
Находим координаты центра окружностей. Пишем уравнения окружностей.
Расчет - ОТВЕТ - на рисунке в приложении.
18_03_09_Задание № 7:
Диагональ трапеции делит её на два подобных между собой треугольника. Отношение боковых сторон трапеции равно 2. Найдите отношение большего основания трапеции к её меньшему основанию.
РЕШЕНИЕ: Пусть в трапеции ABCD такой диагональю является BD. Тогда накрест лежащие углы CBD и ADВ равны.
Так как в трапеции противолежащие углы не равны, то другие пары равных углов это ABD=BCD и BAD=BDC.
Отношение пропорциональных сторон: АВ/CD=AD/BD=BD/BC=2
Выразим из второй части: AD/BD=2, AD=2BD
Выразим из третьей части: BD/BC=2, BD=2BC
Подставляем: AD=2*2BC=4BC. Значит AD/BC=4.
ОТВЕТ: 4:1