Линейкой находишь сторону а и б
Прямоугольник зелёный:
Стороны А будут АB
Стороны B будут ВС
Что бы найти периметр: Р=(а+b)•2
Что бы найти площадь: S=a•b
Конкретно для этой фигуры
Прямоугольник синий:
Стороны А будут FG
Стороны B будут FE
Что бы найти периметр: Р=(а+b)•2
Что бы найти площадь: S=a•b
Квадрат:
Измеряешь одну сторону и ставишь в формулу:
P = 4a (Периметр)
S=a² (Площадь) а² это к примеру 3²=9 , то есть ты 3 умножаешь само на себя 2 раза, 3•3.
Где "a" – длина стороны квадрата.
Надеюсь понятно отметь как лучший ♥️
7x+3\ \textgreater \ 5(x-4)+1
7x+3\ \textgreater \ 5x-20+1
7x-5x\ \textgreater \ -19-3
2x\ \textgreater \ -22
x\ \textgreater \ -11
2. 2 x^{2} +13x-7\ \textgreater \ 0
D=169+56=225
x_1= \frac{-13+15}{2*2} =0,5; x_2=\frac{-13-15}{2*2} =-7
x∈(-∞;-7)∪(0,5;+∞)
3. 2(1-x) \geq 5x(3x+2)
2-2x \geq 15 x^{2} +10x
2-2x-15 x^{2} -10x \geq 0
-15 x^{2} -12x+2 \geq 0
D=(-12)^2-4*(-15)*2=144+120=264
x_1= \frac{12+2 \sqrt{66} }{-30}= -\frac{6+ \sqrt{66} }{15} ; x_= \frac{12-2 \sqrt{66} }{-30}= -\frac{6- \sqrt{66} }{15}
x∈[-\frac{6+ \sqrt{66} }{15}; -\frac{6- \sqrt{66} }{15} ]
4. 3 x^{2} +5x-8 \geq 0
D=25-4*3*(-8)=25+96=121
x_1= \frac{-5+11}{2*3} =1; x_2= \frac{-5-11}{2*3} =- \frac{8}{3}
x∈(-∞;-8/3]∪[1;+∞)