1. 10 м
2. 5 м
3. 60 м
Пошаговое объяснение:
S = 4S(полукруга)+S(квадрата)
Пусть 2a - длина стороны квадрата, тогда радиус полукруга в 2 раза меньше и равен а.
S(полукруга) = *r^2/2, где r - радиус полукруга.
4S(полукруга) = 4*а^2/2 = 2
*а^2
S(квадрата) = (2a)^2 = 4a^2
Общая площадь S = 4S(полукруга)+S(квадрата) = 2*а^2 + 4a^2 =
= 6a^2 + 4a^2 = 10a^2 = 250 м²
Тогда а = 5 м - длина радиуса полукруга
2а = 10 м - длина стороны квадрата
Забор состоит из 4 полукругов, значит, его длина
4*2r/2 = 4
r = 4
a = 4*3*5 = 60 м
при делении точкой отрезка на 2 части, относящиеся как m к n, есть формула для вычисления координат этой точки:
ищем длины сторон:
для этого используем формулу
находим координаты точки C:
теперь определим вид треугольника для этого используем теорему косинусов:
вид треугольника будем определять по косинусу самого большого угла; если cos<0, то угол тупой; если cos=0, то угол прямой; если cos>0, то угол острый.
Против большей стороны лежит больший угол, поэтому запишем теорему косинусов для DK и косинуса угла E:
cosE<0 поэтому угол тупой и треугольник тупоугольный
ответ:
1)
2) треугольник тупоугольный