М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
vitaly1552
vitaly1552
07.06.2022 19:59 •  Математика

Автобус за 6 мин проехал 12км,проезжая за каждую минуту одинаковое расстояние.Сколько км проезжал автобус за одну минуту?Сколько км проехал бы автобус ща 1 час,если бы продолжал двигаться с такой же скоростью?

👇
Ответ:
KarinaBelous
KarinaBelous
07.06.2022

v=S÷t

v=12км÷6мин=2км/мин это расстояние за 1минуту и его скорсть

t=60мин

S=v×t

S=2×60=120км это расстояние за один час

4,8(53 оценок)
Открыть все ответы
Ответ:
Brain111t
Brain111t
07.06.2022
Есть несколько вычислить этот интеграл.Метод #1пусть u=x+2u=x+2.Тогда пусть du=dxdu=dx и подставим dudu:∫u4du∫u4duИнтеграл unun есть un+1n+1un+1n+1:∫u4du=u55∫u4du=u55Если сейчас заменить uu ещё в:15(x+2)515(x+2)5Метод #2Перепишите подынтегральное выражение:(x+2)4=x4+8x3+24x2+32x+16(x+2)4=x4+8x3+24x2+32x+16Интегрируем почленно:Интеграл xnxn есть xn+1n+1xn+1n+1:∫x4dx=x55∫x4dx=x55Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:∫8x3dx=8∫x3dx∫8x3dx=8∫x3dxИнтеграл xnxn есть xn+1n+1xn+1n+1:∫x3dx=x44∫x3dx=x44Таким образом, результат будет: 2x42x4Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:∫24x2dx=24∫x2dx∫24x2dx=24∫x2dxИнтеграл xnxn есть xn+1n+1xn+1n+1:∫x2dx=x33∫x2dx=x33Таким образом, результат будет: 8x38x3Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:∫32xdx=32∫xdx∫32xdx=32∫xdxИнтеграл xnxn есть xn+1n+1xn+1n+1:∫xdx=x22∫xdx=x22Таким образом, результат будет: 16x216x2Интеграл от константы есть эта константа, умноженная на переменную интегрирования:∫16dx=16x∫16dx=16xРезультат есть: x55+2x4+8x3+16x2+16xx55+2x4+8x3+16x2+16xТеперь упростить:15(x+2)515(x+2)5Добавляем постоянную интегрирования:15(x+2)5+constant15(x+2)5+constant

15(x+2)5+constant

4,5(99 оценок)
Ответ:
dania45451
dania45451
07.06.2022
Здесь суть в том, чтобы рассмотреть функцию arctg(3m^2+12m+11). Областью определения f1(m)=arctg(m) является множество действительных чисел. Областью определения f2(m)=arctg(3m^2+12m+11) тоже является множество действительных чисел. Множество значений f1(m) равно (-π/2;π/2).
Но теперь рассмотрим внимательнее функцию f2(m). Запишем ее от другого аргумента. Это будет уже другая функция g(n)=arctg(n), причем n является функцией от m. n(m)=3m^2+12m+11. Теперь уже на область определения функции g(n) накладываются новые ограничения, поскольку областью определения функции g(n) является область значений функции n(m).
n(m) - парабола с ветвями вверх, ее минимальное значение достигается при m=-12/(2*3)=-2. n(-2)=-1. Сверху ограничений на функцию n(m) нет.
Функции f1(m) и g(n) похожи. Разница лишь в их области определения. Это влечет изменение области значений. Если у f1(m) нижней границей была асимптота -π/2, то у g(n) наименьшим значением является g(-1)=-π/4. Верхняя же граница у обоих функций совпадает. Таким образом, областью значений функции g(n)=arctg(n), где n(m)=3m^2+12m+11, является полуинтервал [-π/4;π/2).
Вернемся к исходному неравенству.
1) Если x=0, то левая часть неравенства обращается в 0, и неравенство не справедливо ни при каких m.
2) x∈[-3;0)
Можно разделить обе части на 4x, при этом сменив знак неравенства.
π/4*(x+1)-arctg(3m^2+12m+11)<0
arctg(3m^2+12m+11)>π/4*(x+1)
Слева находится функция арктангенса, ограниченная областью значений [-π/4;π/2). Справа находится горизонтальная прямая. Требуется, чтобы функция арктангенса была полностью выше этой прямой. Очевидно, что π/4*(x+1) должно быть строго меньше наименьшего значения функции арктангенса.
π/4*(x+1)<-π/4
x+1<-1
x<-2
Ввиду ограничений для этого пункта, x∈[-3;-2)
3) x∈(0;1]
Здесь разделим исходное неравенство на 4x уже без смены знака.
π/4*(x+1)-arctg(3m^2+12m+11)>0
arctg(3m^2+12m+11)<π/4*(x+1)
Так как π/2 является верхней границей арктангенса, которая никогда не достигается, то справедливо неравенство:
arctg(3m^2+12m+11)<π/2≤π/4*(x+1)
Отсюда π/2≤π/4*(x+1),
2≤x+1
x≥1
С учетом ограничений для этого пункта, x=1.
Таким образом, x∈[-3;2)∪{1}
4,4(78 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ