Дано: 10 кг муки - 14 кг хлеба Найти: Сколько припёка=? кг 28 кг припёка - ? кг муки Сколько хлеба=? кг Решение 1) Из 10 кг ржаной муки получается 14 кг хлеба, значит количество припёка равно: 14-10=4 (кг) 2) Для того, чтобы вычислить сколько кг муки надо взять для получения 28 кг припёка, вычислим во сколько раз увеличился припёк: 28÷4=7 (раз) Значит количество муки весом 10 кг тоже увеличилось в 7 раз: 10×7=70 (кг). 3) Посчитаем сколько хлеба можно испечь из 70 кг муки: 28 кг (припёка)+70 кг (муки)=98 (кг хлеба) или количество хлеба тоже увеличилось в 7 раз (7×10+7×4=7×14): 14×7=98 (кг хлеба) ответ: количество припёка равно 4 кг (из 10 кг муки); для получения 28 кг припёка взяли 70 кг муки; из 70 кг муки получили 28 кг хлеба.
Здесь суть в том, чтобы рассмотреть функцию arctg(3m^2+12m+11). Областью определения f1(m)=arctg(m) является множество действительных чисел. Областью определения f2(m)=arctg(3m^2+12m+11) тоже является множество действительных чисел. Множество значений f1(m) равно (-π/2;π/2). Но теперь рассмотрим внимательнее функцию f2(m). Запишем ее от другого аргумента. Это будет уже другая функция g(n)=arctg(n), причем n является функцией от m. n(m)=3m^2+12m+11. Теперь уже на область определения функции g(n) накладываются новые ограничения, поскольку областью определения функции g(n) является область значений функции n(m). n(m) - парабола с ветвями вверх, ее минимальное значение достигается при m=-12/(2*3)=-2. n(-2)=-1. Сверху ограничений на функцию n(m) нет. Функции f1(m) и g(n) похожи. Разница лишь в их области определения. Это влечет изменение области значений. Если у f1(m) нижней границей была асимптота -π/2, то у g(n) наименьшим значением является g(-1)=-π/4. Верхняя же граница у обоих функций совпадает. Таким образом, областью значений функции g(n)=arctg(n), где n(m)=3m^2+12m+11, является полуинтервал [-π/4;π/2). Вернемся к исходному неравенству. 1) Если x=0, то левая часть неравенства обращается в 0, и неравенство не справедливо ни при каких m. 2) x∈[-3;0) Можно разделить обе части на 4x, при этом сменив знак неравенства. π/4*(x+1)-arctg(3m^2+12m+11)<0 arctg(3m^2+12m+11)>π/4*(x+1) Слева находится функция арктангенса, ограниченная областью значений [-π/4;π/2). Справа находится горизонтальная прямая. Требуется, чтобы функция арктангенса была полностью выше этой прямой. Очевидно, что π/4*(x+1) должно быть строго меньше наименьшего значения функции арктангенса. π/4*(x+1)<-π/4 x+1<-1 x<-2 Ввиду ограничений для этого пункта, x∈[-3;-2) 3) x∈(0;1] Здесь разделим исходное неравенство на 4x уже без смены знака. π/4*(x+1)-arctg(3m^2+12m+11)>0 arctg(3m^2+12m+11)<π/4*(x+1) Так как π/2 является верхней границей арктангенса, которая никогда не достигается, то справедливо неравенство: arctg(3m^2+12m+11)<π/2≤π/4*(x+1) Отсюда π/2≤π/4*(x+1), 2≤x+1 x≥1 С учетом ограничений для этого пункта, x=1. Таким образом, x∈[-3;2)∪{1}
(-32•(-6)-211)+(-56):4 = (192-211)-14 = (-19)-14 = -19-14 = -33