1) у = -х² + 12х + 5 Найдите критические точки функции и определите, какие из них является точками максимума и минимума. Находим производную и приравниваем её нулю: y' = -2x + 12 = 0. x = 12/2 = 6. То есть критическая точка только одна. Это следует из того, что график заданной функции - парабола ветвями вниз (коэффициент перед х² отрицателен). У такой параболы есть только максимум в её вершине Хо. Хо = -в/2а = -12/2*(-1) = 6. Можно провести исследование по знаку производной вблизи критической точки. х = 5.5 6 6.5 y' = -2x + 12 1 0 -1. Если производная меняет знак с + на - то это максимум функции, минимума нет.
3) найдите наибольшее и наименьшее значение функции: y=x^4-8x^2-9 на промежутке [-1;3]. y' = 4x³ -16x = 0. 4x(x²-4) = 0. Имеем 3 корня: х = 0, х = 2 и х = -2. х = -2.5 -2 -1.5 -0.5 0 0.5 1.5 2 2.5 y' = 4x³ -16x -22.5 0 10.5 7.5 0 -7.5 -10.5 0 22.5. х = -2 и 2 это минимум, у = -25. х = 0 это максимум, у = -9
Пошаговое объяснение:
ДАНО:Y(x) = x³ -6*x² +4.
ИССЛЕДОВАНИЕ.
1. Область определения D(y) ∈ R, Х∈(-∞;+∞) - непрерывная , гладкая.
2. Вертикальная асимптота - нет - нет разрывов.
3. Наклонная асимптота - y = k*x+b.
k = lim(+∞) Y(x)/x = +∞ - нет наклонной (горизонтальной) асимптоты.
4. Периода - нет - не тригонометрическая функция.
5. Пересечение с осью OХ.
Применим тригонометрическую формулу Виета.
Разложим многочлен на множители. Y=(x+0,77)*(x-0,88)*(x-5,88)
Нули функции: Х₁ =-0,77, Х₂ =0,88, Х₃ =5,88
(без комментариев, без расчёта).
6. Интервалы знакопостоянства.
Отрицательная - Y(x)<0 X∈(-∞;-0,77]U[0,88;5,88]
Положительная -Y(x)>0 X∈[-0,77;0,88]U[5,88;+∞)
7. Пересечение с осью OY. Y(0) = 4
8. Исследование на чётность.
В полиноме есть и чётные и нечётные степени - функция общего вида.
Y(-x) ≠ Y(x). Y(-x) ≠ -Y(x), Функция ни чётная, ни нечётная.
9. Первая производная. Y'(x) = 3*x² -12*x = 3*x*(x-4) = 0
Корни Y'(x)=0. Х₄ =0 Х₅=4
Где производная отрицательна (между корнями), там функция убывает.
10. Локальные экстремумы.
Максимум - Ymax(X₄= 0) =4. Минимум - Ymin(X₅ = 4) =-28
11. Интервалы возрастания и убывания.
Возрастает Х∈(-∞;0;]U[4;+∞) , убывает - Х∈[0;4] (между корнями).
ВАЖНО! Функция непрерывная - скобки квадратные.
12. Вторая производная - Y"(x) = 6* x -12 = 6*(х-2) = 0
Корень второй производной - точка перегиба Х₆=2
13. Выпуклая “горка» Х∈(-∞; Х₆ = 2] - производная Y"(x)<0 - отрицательная)
Вогнутая – «ложка» Х∈[Х₆ = 2; +∞).
14. График в приложении. Дополнительно схема/шаблон для анализа функции.